1
|
Lu Z, Liu L, Miao R, Zhang N, Gao M, Fan X, Li Y. Lignin sulfonate induced ultrafast fabrication of polypyrrole-based conductive organohydrogel for high performance flexible strain and temperature sensor. Int J Biol Macromol 2024; 282:136969. [PMID: 39490480 DOI: 10.1016/j.ijbiomac.2024.136969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The ultrafast preparation of electrically conductive hydrogels to endow high sensing performance and temperature tolerance remains a critical challenge. Herein, lignosulfonate sodium-templated polypyrrole (LS-PPy) nanofillers were rapidly introduced into polyacrylic acid (PAA) hydrogel through ultrafast free radical polymerization in a glycerol/water binary solvent system. The resultant LS-PPy/PAA electrically conductive organohydrogel possesses satisfactory mechanical performance (strength of 56 kPa at a tensile strain of 800 %), strong adhesion, and a desirable low freezing point (-35 °C). Furthermore, this organohydrogel exhibits high strain sensitivity (gauge factor = 2.65), fast response time (~160 ms), low signal hysteresis, and excellent cyclic stability (over 1200 cycles). And the wearable LS-PPy/PAA organohydrogel sensor could accurately and real-time monitor various intense or subtle human movements, such as joint bending, facial expression and hand writing. Besides, the developed LS-PPy/PAA temperature sensor can respond to environmental temperature variations over a wide range of -20-100 °C. High resolution of 0.5 °C with remarkable sensitivity (-0.80 %/°C and linearity of R2 = 0.99) and repeatability were achieved within 36.5-40 °C, which makes it suitable for human body temperature monitoring. All these results demonstrate the substantial prospective value of the LS-PPy/PAA hydrogel in wearable sensors and other associated fields.
Collapse
Affiliation(s)
- Zichun Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Lingke Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - RunTian Miao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Ning Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Minjuan Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyu Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Yueqin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Liu H, Zhang XF, Li M, Yao J. Attapulgite-Reinforced Cellulose Hydrogels with High Conductivity and Antifreezing Property for Flexible Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20986-20994. [PMID: 39321402 DOI: 10.1021/acs.langmuir.4c02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Ionic conductive cellulose hydrogels are some of the most promising candidates for flexible sensors. However, it is difficult to simultaneously prepare cellulose hydrogels with high mechanical strength, good ionic conductivity, and antifreeze performance. In this work, a natural clay (attapulgite)-reinforced cellulose hydrogel was fabricated. Through a one-pot method, cellulose and attapulgite were dispersed in a concentrated ZnCl2 solution. The obtained hydrogel exhibited a dual network of hydrogen bonds and Zn2+-induced ionic interactions. Attapulgite serves as an inorganic filler that can regulate the hydrogen-bonding density among cellulose molecules and provides abundant channels for fast ion transport. By optimizing the attapulgite loading, a mechanically strong (compressive strength up to 1.10 MPa), tough (fracture energy up to 0.36 MJ m-3), highly ionic conductive (4.15 S m-1), and freezing-tolerant hydrogel was prepared. These hydrogels can be used for sensitive and stable human motion sensing, demonstrating their great potential for healthcare applications.
Collapse
Affiliation(s)
- Hu Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengjie Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Wan J, Wang F, Zhong M, Liang Y, Wu J. Skin-like dual-network gelatin/chitosan/emodin organohydrogel sensors mediated by Hofmeister effect and Schiff base reaction. Int J Biol Macromol 2024; 280:135837. [PMID: 39321519 DOI: 10.1016/j.ijbiomac.2024.135837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Conductive gels have been extensively explored in the field of wearable electronics due to their excellent flexibility and deformability. Traditional gels constructed from synthetic networks pose risks to biosecurity due to residual monomers like acrylamide, while pure biological hydrogels are plagued by inadequate mechanical performance. This study explores an innovative strategy, employing a dual-network (DN) system with purely biological components, as a superior alternative to conventional synthetic networks. By integrating gelatin and chitosan, two natural polymers with inherent biocompatibility and advantageous biomedical properties, this approach successfully avoids the toxic risk of synthetic polymers. By utilizing emodin, a natural extract from Rheum officinale, as a cross-linking agent for chitosan by Schiff base reactions, and Hofmeister effect of gelatin induced by sodium carbonate, the DN gelatin/chitosan/emodin organohydrogels achieve ultrahigh tensile strength (up to 9.45 MPa), tunable moduli (ranging from 0.07 to 3.42 MPa), excellent toughness (∼9.64 MJ/m3), and high ionic conductivity (7.63 mS/cm). Remarkably, these conductive organohydrogels also exhibit high sensitivity (gauge factor up to 1.5) and ultrahigh linearity (R2 up to 0.9995), making them promising candidates for soft human-motion sensors capable of accurately detecting and monitoring human movements in real time with high sensitivity and durability.
Collapse
Affiliation(s)
- Jia Wan
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, Shenzhen, Shenzhen 518035, China
| | - Feng Wang
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, Shenzhen, Shenzhen 518035, China
| | - Meifang Zhong
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, Shenzhen, Shenzhen 518035, China
| | - Yongzhi Liang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jun Wu
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, Shenzhen, Shenzhen 518035, China.
| |
Collapse
|
4
|
Gao J, Li X, Xu L, Yan M, Wang Q. Dual design strategy for carboxymethyl cellulose-polyaniline composite hydrogels as super-sensitive amphibious sensors. Int J Biol Macromol 2024; 280:135630. [PMID: 39278445 DOI: 10.1016/j.ijbiomac.2024.135630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Conductive hydrogels as ideal candidate materials for flexible sensors have exhibited many promising applications. However, complex application environments, such as low temperatures or underwater conditions, have introduced new requirements for hydrogel sensors. Herein, a high-performance conductive hydrogel based on carboxymethyl cellulose-polyaniline (CMC-PANI) submicron spheres, poly (vinyl alcohol) (PVA) and phytic acid (PA) was designed and fabricated via a dual design strategy. CMC-PANI particles were introduced to not only empower the good electromechanical performance to the hydrogels, but also enhance the mechanical properties. The obtained hydrogel exhibited good mechanical property, anti-freezing, anti-swellable behavior and recyclable performance. Resistive-type strain sensors assembled by the prepared hydrogels exhibited high pressure sensitivity (34.17×10-2 kPa-1) and fast response time (100 ms), which can clearly detect the pulse beats. Moreover, the hydrogel sensors can achieve long-term stability, high sensitivity and fatigue resistance as an underwater sensor. Based on these favorable performances, the conductive polymer hydrogels may open up an enticing avenue for functional soft materials in health diagnostic and electronic components.
Collapse
Affiliation(s)
- Jianliang Gao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Lina Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Manqing Yan
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Qiyang Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
5
|
Yue D, Shi S, Chen H, Bai L, Wang W, Yang H, Yang L, Wei D. Fabrication of anti-freezing and self-healing nanocomposite hydrogels based on phytic acid and cellulose nanocrystals for high strain sensing applications. J Mater Chem B 2024; 12:762-771. [PMID: 38167689 DOI: 10.1039/d3tb02482b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
For hydrogel-based flexible sensors, it is a challenge to enhance the stability at sub-zero temperatures while maintaining good self-healing properties. Herein, an anti-freezing nanocomposite hydrogel with self-healing properties and conductivity was designed by introducing cellulose nanocrystals (CNCs) and phytic acid (PA). The CNCs were grafted with polypyrrole (PPy) by chemical oxidation, which were used as the nanoparticle reinforcement phase to reinforce the mechanical strength of hydrogels (851.8%). PA as a biomass material could form strong hydrogen bond interactions with H2O molecules, endowing hydrogels with prominent anti-freezing properties. Based on the non-covalent interactions, the self-healing rate of the hydrogels reached 92.9% at -15 °C as the content of PA was 40.0 wt%. Hydrogel-based strain sensors displayed high sensitivity (GF = 0.75), rapid response time (350 ms), good conductivity (3.1 S m-1) and stability at -15 °C. Various human movements could be detected by using them, including small (smile and frown) and large changes (elbow and knee bending). This work provides a promising method for the development of flexible wearable sensors that work stably in frigid environments.
Collapse
Affiliation(s)
- Dongqi Yue
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Shaoning Shi
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| |
Collapse
|
6
|
Chang S, Weng Z, Zhang C, Jiang S, Duan G. Cellulose-Based Intelligent Responsive Materials: A Review. Polymers (Basel) 2023; 15:3905. [PMID: 37835953 PMCID: PMC10575029 DOI: 10.3390/polym15193905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Due to the rapid development of intelligent technology and the pursuit of green environmental protection, responsive materials with single response and actuation can no longer meet the requirements of modern technology for intelligence, diversification, and environmental friendliness. Therefore, intelligent responsive materials have received much attention. In recent years, with the development of new materials and technologies, cellulose materials have become increasingly used as responsive materials due to their advantages of sustainability and renewability. This review summarizes the relevant research on cellulose-based intelligent responsive materials in recent years. According to the stimuli responses, they are divided into temperature-, light-, electrical-, magnetic-, and humidity-responsive types. The response mechanism, application status, and development trend of cellulose-based intelligent responsive materials are summarized. Finally, the future perspectives on the preparation and applications of cellulose-based intelligent responsive materials are presented for future research directions.
Collapse
Affiliation(s)
- Sisi Chang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Zhangzhao Weng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
7
|
Gu X, Cheng H, Lu X, Li R, Ouyang X, Ma N, Zhang X. Plant-based Biomass/Polyvinyl Alcohol Gels for Flexible Sensors. Chem Asian J 2023; 18:e202300483. [PMID: 37553785 DOI: 10.1002/asia.202300483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Flexible sensors show great application potential in wearable electronics, human-computer interaction, medical health, bionic electronic skin and other fields. Compared with rigid sensors, hydrogel-based devices are more flexible and biocompatible and can easily fit the skin or be implanted into the body, making them more advantageous in the field of flexible electronics. In all designs, polyvinyl alcohol (PVA) series hydrogels exhibit high mechanical strength, excellent sensitivity and fatigue resistance, which make them promising candidates for flexible electronic sensing devices. This paper has reviewed the latest progress of PVA/plant-based biomass hydrogels in the construction of flexible sensor applications. We first briefly introduced representative plant biomass materials, including sodium alginate, phytic acid, starch, cellulose and lignin, and summarized their unique physical and chemical properties. After that, the design principles and performance indicators of hydrogel sensors are highlighted, and representative examples of PVA/plant-based biomass hydrogel applications in wearable electronics are illustrated. Finally, the future research is briefly prospected. We hope it can promote the research of novel green flexible sensors based on PVA/biomass hydrogel.
Collapse
Affiliation(s)
- Xiaochun Gu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Haoge Cheng
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinyi Lu
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Rui Li
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xiao Ouyang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ning Ma
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinyue Zhang
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|