1
|
Ren F, Kang R, Song T, Lv S, Zhang H, Wang J. Preparation, structural characterization, and functional properties of wheat gluten amyloid fibrils-chitosan double network hydrogel as delivery carriers for ferulic acid. Int J Biol Macromol 2024; 277:134282. [PMID: 39084446 DOI: 10.1016/j.ijbiomac.2024.134282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
It has been demonstrated that ferulic acid (FA) can be effectively encapsulated using wheat gluten amyloid fibrils (AF) and chitosan (CS) in a double network hydrogel (DN) form, with cross-linking mediated by Genipin (GP). Within this system, the DN comprising gluten AF-FA and CS-FA exhibited optimal loading metrics at a formulation designated as DN8, achieving a load efficiency of 88.5 % and a load capacity of 0.78 %. Analysis through fluorescence quenching confirmed that DN8 harbored the highest quantity of FA. Fourier-transform infrared spectroscopy (FTIR) further verified a significant increase in β-sheet content post-hydrogel formation, enhancing the binding capacity for FA. Rheological assessments indicated a transition from solution to gel, delineating the phase state of the DN. Comprehensive in vitro digestion studies revealed that DN8 provided superior sustained release properties, exhibited the highest total antioxidant capacity, and displayed potent inhibitory activities against angiotensin I converting enzyme (ACE) and acetylcholinesterase (Ach-E). Additionally, the DN significantly bolstered the stability of FA against photothermal degradation. Collectively, these findings lay foundational insights for the advancement of the wheat gluten AF-based delivery system for bioactive compounds and provided a theoretical basis for the development of functional foods.
Collapse
Affiliation(s)
- Feiyue Ren
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Rui Kang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Tiancong Song
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Shihao Lv
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China.
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China.
| |
Collapse
|
2
|
Tian Z, Ai B, Yang Y, Zheng X, Xiao D, Zheng L, Sheng Z, Zhang Z, Wang M. Lysozyme amyloid fibril-chitosan double network hydrogel: Preparation, characterization, and application on inhibition of N ε-(carboxyethyl)lysine. Int J Biol Macromol 2024; 263:130011. [PMID: 38340913 DOI: 10.1016/j.ijbiomac.2024.130011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Nε-(carboxyethyl)lysine (CML), a typical advanced glycosylation end product produced during the processing of meat under high temperature, poses health risks. Active substances like polyphenols are known to inhibit the formation of harmful products during the processing of food. In this study, our objective was to prepare a double network hydrogel (DN) loaded with gallic acid using amyloid fibers and chitosan as a rigid and flexible network, respectively. The network as well as the interactions between the two networks were observed and analyzed. Chitosan concentration was the key factor regulating the structure and properties of the DN. At a chitosan concentration of 0.7%wt, the structure of DN became dense and its mechanical properties were improved, with the loading capacity and loading efficiency being increased by 143.79 % and 128.21 %, compared with those of amyloid fibril alone. Furthermore, the digestibility of gallic acid in simulated intestinal fluid was increased by 215.10 %. Moreover, adding DN to the beef patties effectively inhibited the formation of CML in a dose-response dependent manner. Addition of 3 wt% DN resulted in the inhibitory rate of CML in roast beef patties reaching a high 73.09 %. The quality and palatability of beef patties were improved. These findings suggest that DN shows great potential as an application that may be utilized to deliver active substances aimed at inhibiting CML in the meat processing industry.
Collapse
Affiliation(s)
- Ziang Tian
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; College of Food Science Engineering, Hainan University, Haikou 570228, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| | - Zhanwu Sheng
- Agricultural products processing research institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524000, China.
| | - Zhengke Zhang
- College of Food Science Engineering, Hainan University, Haikou 570228, China
| | - Mingfu Wang
- Institute for Advanced Study Shenzhen, University Shenzhen, Guangdong 518060, China
| |
Collapse
|
3
|
Bhattacharya S, Shinde P, Page A, Sharma S. 5-Fluorouracil and Anti-EGFR antibody scaffold chitosan-stabilized Pickering emulsion: Formulations, physical characterization, in-vitro studies in NCL-H226 cells, and in-vivo investigations in Wistar rats for the augmented therapeutic effects against squamous cell carcinoma. Int J Biol Macromol 2023; 253:126716. [PMID: 37673158 DOI: 10.1016/j.ijbiomac.2023.126716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
This research seeks to optimize a chitosan-stabilized Pickering emulsion (PE) containing 5-fluorouracil (5-FU) as a potential Squamous Cell Carcinoma therapy. The 5-Fluorouracil was also thoroughly analysed using UV spectrophotometry and RP-HPLC, demonstrating exceptional linearity, sensitivity, precision, and robustness. The techniques of characterization revealed Pickering emulsion (PE) morphology, solid-like gel properties, successful encapsulation, and promising anticancer effects. FTIR was used to validate the efficacy of encapsulation, and DSC was used to confirm the post-encapsulation drug stability. The 0.6 % chitosan-stabilized PE showed exceptional stability and drug loading efficiency. Anti-EGFR-5-FU-CS-PE gel was developed for sustained drug release in the treatment of Squamous Cell Carcinoma. Anti-EGFR-5-FU-CS-PE demonstrated potent anticancer effects in vitro, with a lower IC50 than 5-FU and 5-FU-CS-PE. Anti-EGFR-5-FU-PE Pickering emulsions based on chitosan were investigated for their rheological properties, cellular interactions, and therapeutic potential. Both emulsions and gel exhibited sustained in vitro drug release after successful encapsulation. Anti-EGFR-5-FU-CS-PE induced apoptosis, decreased mitochondrial membrane potential, and inhibited the migration of cancer cells. Wistar mice were tested for safety and tumour growth inhibition. All formulations exhibited exceptional six-month stability. Anti-EGFR-5-FU-CS-PE emerges as a viable therapeutic option, necessitating additional research.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Prafull Shinde
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India; Ph.D. Scholar at Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, NMIMS Deemed-to-be-University.
| | - Amit Page
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Satyam Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar 844102, India.
| |
Collapse
|