1
|
Bonde S, Chandarana C, Prajapati P, Vashi V. A comprehensive review on recent progress in chitosan composite gels for biomedical uses. Int J Biol Macromol 2024; 272:132723. [PMID: 38825262 DOI: 10.1016/j.ijbiomac.2024.132723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Chitosan (CS) composite gels have emerged as promising materials with diverse applications in biomedicine. This review provides a concise overview of recent advancements and key aspects in the development of CS composite gels. The unique properties of CS, such as biocompatibility, biodegradability, and antimicrobial activity, make it an attractive candidate for gel-based composites. Incorporating various additives, such as nanoparticles, polymers, and bioactive compounds, enhances the mechanical, thermal, and biological and other functional properties of CS gels. This review discusses the fabrication methods employed for CS composite gels, including blending and crosslinking, highlighting their influence on the final properties of the gels. Furthermore, the uses of CS composite gels in tissue engineering, wound healing, drug delivery, and 3D printing highlight their potential to overcome a number of the present issues with drug delivery. The biocompatibility, antimicrobial properties, electroactive, thermosensitive and pH responsive behavior and controlled release capabilities of these gels make them particularly suitable for biomedical applications. In conclusion, CS composite gels represent a versatile class of materials with significant potential for a wide range of applications. Further research and development efforts are necessary to optimize their properties and expand their utility in pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Smita Bonde
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India.
| | - Chandani Chandarana
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| | - Parixit Prajapati
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| | - Vidhi Vashi
- SSR College of Pharmacy, Sayli, Silvassa 396230, UT of Dadra and Nagar Haveli, India
| |
Collapse
|
2
|
Ortega-Sánchez C, Melgarejo-Ramírez Y, Rodríguez-Rodríguez R, Jiménez-Ávalos JA, Giraldo-Gomez DM, Gutiérrez-Gómez C, Rodriguez-Campos J, Luna-Bárcenas G, Velasquillo C, Martínez-López V, García-Carvajal ZY. Hydrogel Based on Chitosan/Gelatin/Poly(Vinyl Alcohol) for In Vitro Human Auricular Chondrocyte Culture. Polymers (Basel) 2024; 16:479. [PMID: 38399857 PMCID: PMC10892533 DOI: 10.3390/polym16040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Three-dimensional (3D) hydrogels provide tissue-like complexities and allow for the spatial orientation of cells, leading to more realistic cellular responses in pathophysiological environments. There is a growing interest in developing multifunctional hydrogels using ternary mixtures for biomedical applications. This study examined the biocompatibility and suitability of human auricular chondrocytes from microtia cultured onto steam-sterilized 3D Chitosan/Gelatin/Poly(Vinyl Alcohol) (CS/Gel/PVA) hydrogels as scaffolds for tissue engineering applications. Hydrogels were prepared in a polymer ratio (1:1:1) through freezing/thawing and freeze-drying and were sterilized by autoclaving. The macrostructure of the resulting hydrogels was investigated by scanning electron microscopy (SEM), showing a heterogeneous macroporous structure with a pore size between 50 and 500 μm. Fourier-transform infrared (FTIR) spectra showed that the three polymers interacted through hydrogen bonding between the amino and hydroxyl moieties. The profile of amino acids present in the gelatin and the hydrogel was determined by ultra-performance liquid chromatography (UPLC), suggesting that the majority of amino acids interacted during the formation of the hydrogel. The cytocompatibility, viability, cell growth and formation of extracellular matrix (ECM) proteins were evaluated to demonstrate the suitability and functionality of the 3D hydrogels for the culture of auricular chondrocytes. The cytocompatibility of the 3D hydrogels was confirmed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reaching 100% viability after 72 h. Chondrocyte viability showed a high affinity of chondrocytes for the hydrogel after 14 days, using the Live/Dead assay. The chondrocyte attachment onto the 3D hydrogels and the formation of an ECM were observed using SEM. Immunofluorescence confirmed the expression of elastin, aggrecan and type II collagen, three of the main components found in an elastic cartilage extracellular matrix. These results demonstrate the suitability and functionality of a CS/Gel/PVA hydrogel as a 3D support for the auricular chondrocytes culture, suggesting that these hydrogels are a potential biomaterial for cartilage tissue engineering applications, aimed at the regeneration of elastic cartilage.
Collapse
Affiliation(s)
- Carmina Ortega-Sánchez
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (C.O.-S.); (Y.M.-R.)
| | - Yaaziel Melgarejo-Ramírez
- Laboratorio de Biotecnología, Unidad de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (C.O.-S.); (Y.M.-R.)
| | - Rogelio Rodríguez-Rodríguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico; (R.R.-R.); (J.A.J.-Á.)
| | - Jorge Armando Jiménez-Ávalos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico; (R.R.-R.); (J.A.J.-Á.)
| | - David M. Giraldo-Gomez
- Unidad de Microscopia, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Interior, Edificio “A” Planta Baja, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Claudia Gutiérrez-Gómez
- División de Cirugía Plástica y Reconstructiva, Hospital General Dr. Manuel Gea González, Ciudad de México 14080, Mexico;
| | - Jacobo Rodriguez-Campos
- Servicios Analíticos y Metrológicos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Av. Normalistas No. 800, Col. Colinas de la Normal, Guadalajara 44270, Jalisco, Mexico;
| | - Gabriel Luna-Bárcenas
- Institute of Advanced Materials for Sustainable Manufacturing Tecnológico de Monterrey, Epigmenio González 500, San Pablo, Santiago de Querétaro 76130, Querétaro, Mexico;
| | - Cristina Velasquillo
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Valentín Martínez-López
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | - Zaira Y. García-Carvajal
- Unidad de Microscopia, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Interior, Edificio “A” Planta Baja, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| |
Collapse
|
3
|
Abdullaev SS, Althomali RH, Abdu Musad Saleh E, Robertovich MR, Sapaev IB, Romero-Parra RM, Alsaab HO, Gatea MA, Fenjan MN. Synthesis of novel antibacterial and biocompatible polymer nanocomposite based on polysaccharide gum hydrogels. Sci Rep 2023; 13:16800. [PMID: 37798276 PMCID: PMC10556060 DOI: 10.1038/s41598-023-42146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
According to recent studies on the benefits of natural polymer-based hydrogels in biomedical applications, gellan gum (GG)/acacia gum (AG) hydrogel was prepared in this study. In order to regulate the mechanical behavior of the hydrogel, graphite carbon nitride (g-C3N4) was included in the hydrogel matrix. In addition, metal oxide nanoparticles ZnCuFe2O4 were added to the composite for antibacterial activity. The prepared GG-AG hydrogel/g-C3N4/ZnCuFe2O4 nanobiocomposite was characterized by using FE-SEM, FTIR, EDX, XRD and TGA. The nanobiocomposite exhibited spherical morphology, which was related to the incorporation of the metal oxide nanoparticles. GG-AG hydrogel/g-C3N4/ZnCuFe2O4 nanobiocomposite showed 95.11%, 92.73% and 88.97% biocompatibility toward HEK293T cell lines within 24 h, 48 h and 72 h incubation, respectively, which indicates that this nanobiocomposite is completely biocompatible with healthy cells. Also, the nanobiocomposite was able to inhibit Pseudomonas aeruginosa biofilm growth on its surface up to 87%. Rheological studies showed that the nanobiocomposite has a viscoelastic structure and has a water uptake ratio of 93.2%. In comparison with other similar studies, this nanobiocomposite has exhibited superior antibacterial activity complete biocompatibility and proper mechanical properties, high swelling and water absorption capability. These results indicate that GG-AG hydrogel/g-C3N4/ZnCuFe2O4 nanocomposite can be considered as a potential candidate for biomedical applications such as tissue engineering and wound healing.
Collapse
Affiliation(s)
- Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan
- Scientific Department, Tashkent State Pedagogical University Named After Nizami, Tashkent, Uzbekistan
| | - Raed H Althomali
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, 11991, Wadi Al-Dawasir, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, 11991, Wadi Al-Dawasir, Saudi Arabia
| | | | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, National Research University, Tashkent, Uzbekistan
- New Uzbekistan University, Tashkent, Uzbekistan
| | | | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia.
| | - M Abdulfadhil Gatea
- Technical Engineering Department College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Physics, College of Science, University of Kufa, Kufa, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|