1
|
Wang Y, Zhuang D, Munawar N, Zan L, Zhu J. A rich-nutritious cultured meat via bovine myocytes and adipocytes co-culture: Novel Prospect for cultured meat production techniques. Food Chem 2024; 460:140696. [PMID: 39111042 DOI: 10.1016/j.foodchem.2024.140696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 09/06/2024]
Abstract
Cultured meat, an emerging meat production technology, has reduced environmental burden as well as provide healthier and more sustainable method of meat culture. Fat in cultured meat is essential for enhancing texture, taste, and tenderness. However, current cultured meat production method is limited to single-cell type. To meet the consumer demands for cultured meat products, it is crucial to develop new methods for producing cultured meat products that contain both muscle and fat. In this study, cell viability and differentiation were promoted by controlling the ratio and cultivation conditions of myocytes and adipocytes. The total digestibility of cultured meat exceeded 37%, higher than that of beef (34.7%). Additionally, the texture, appearance, and taste of the co-cultured meat were improved. Collectively, this research has great promise for preparing rich-nutritious and digestion cultured meat.
Collapse
Affiliation(s)
- Yafang Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China,; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Noshaba Munawar
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China,; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China..
| |
Collapse
|
2
|
Wang Y, Wang S, Zhuang D, Zan L, Zhu J. Quercetin-enriched animal-free scaffolds for promoted cell proliferation and differentiation in cultured meat production. Food Chem 2024; 464:141622. [PMID: 39423531 DOI: 10.1016/j.foodchem.2024.141622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
To solve the challenges posed by increasing meat consumption, it is imperative to develop polysaccharide composite edible scaffolds for cell-cultured meat production using novel food production technologies. This study developed some non-animal-origin polysaccharide composite scaffolds for cell-cultured meat production, based on chitin‑sodium alginate and crosslinked with quercetin. The results indicated that the chitin‑sodium alginate-quercetin (CH-SA-QR) scaffolds exhibited a porous and loose structure, and excellent mechanical support capability and cell adhesion sites. Meanwhile, QR1 and QR1.5 scaffolds were screened by immunofluorescence staining, RT-qPCR, and SEM imaging results to facilitate the proliferation and differentiation of cells and enhance the generation of myotube fusion and extracellular matrix protein. Importantly, the texture of the fried cultured meat was similar to traditional beef or even more tender, while the color appearance of the cultured meat was different from beef, but more similar to fried meat cutlets. These results suggest that cultured meat produced based on CH-SA-QR scaffolds could provide consumers with more choices.
Collapse
Affiliation(s)
- Yafang Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shancan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Zhang P, Zhao X, Zhang S, Li G, Midgley AC, Fang Y, Zhao M, Nishinari K, Yao X. The important role of cellular mechanical microenvironment in engineering structured cultivated meat: Recent advances. Curr Res Food Sci 2024; 9:100865. [PMID: 39416367 PMCID: PMC11481608 DOI: 10.1016/j.crfs.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cultivated meat (CM) provides a potential solution to meet the rising demand for eco-friendly meat supply systems. Recent efforts focus on producing CM that replicates the architecture and textural toughness of natural skeletal muscle. Significance of the regulated role of cellular microenvironment in myogenesis has been reinforced by the substantial influence of mechanical cues in mediating the muscle tissue organization. However, the formation of structured CM has not been adequately described in context of the mechanical microenvironment. In this review, we provide an updated understanding of the myogenesis process within mechanically dynamic three-dimensional microenvironments, discuss the effects of environmental mechanical factors on muscle tissue regeneration and how cell mechanics respond to the mechanical condition, and further highlight the role of mechanical cues as important references in constructing a sustainable Hydrocolloids-based biomaterials for CM engineering. These findings help to overcome current limitations in improving the textural properties of CM.
Collapse
Affiliation(s)
- Pan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xu Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shiling Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
4
|
Jiang C, Zhang J, Song Y, Song X, Wu H, Jiao R, Li L, Zhang G, Wei D. FOXO1 regulates bovine skeletal muscle cells differentiation by targeting MYH3. Int J Biol Macromol 2024; 260:129643. [PMID: 38253149 DOI: 10.1016/j.ijbiomac.2024.129643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
The growth and development of bovine skeletal muscle and beef yield is closely intertwined. Our previous research found that forkhead box O1 (FOXO1) plays an important role in the regulation of beef muscle formation, but its specific mechanism is still unknown. In this study, we aimed to clarify the regulatory mechanism of FOXO1 in proliferation and differentiation of bovine skeletal muscle cells (BSMCs). The results showed that interfering with FOXO1 can promote proliferation and the cell G1/S phase of BSMCs by up-regulating the expression of PCNA, CDK1, CDK2, CCNA2, CCNB1, CCND1 and CCNE2. Besides, interfering with FOXO1 inhibited the apoptosis of BSMCs by up-regulating the expression of anti-apoptosis gene BCL2, while simultaneously down-regulating the expression of the pro-apoptosis genes BAD and BAX. Inversely, interfering with FOXO1 can promote the differentiation of BSMCs by up-regulating the expression of myogenic differentiation marker genes MYOD, MYOG, MYF5, MYF6 and MYHC. Furthermore, RNA-seq combined with western bolt, immunofluorescence and chromatin immunoprecipitation analysis showed that FOXO1 could regulate BSMCs differentiation process by influencing PI3K-Akt, Relaxin and TGF-beta signaling pathways, and target MYH3 for transcriptional inhibition. In conclusion, this study provides a basis for studying the role and molecular mechanism of FOXO1 in BSMCs.
Collapse
Affiliation(s)
- Chao Jiang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750021, China
| | - Yaping Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xiaoyu Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Hao Wu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Ruopu Jiao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Lanlan Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Guijie Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|
5
|
Wang Y, Zhong Z, Munawar N, Zan L, Zhu J. 3D edible scaffolds with yeast protein: A novel alternative protein scaffold for the production of high-quality cell-cultured meat. Int J Biol Macromol 2024; 259:129134. [PMID: 38176502 DOI: 10.1016/j.ijbiomac.2023.129134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The purpose of this study was to develop a novel edible scaffold by utilizing yeast proteins, which could partially replace collagen and produce hypoallergenic, odorless, and highly nutritious cell-cultured meat that meets the demands of a more significant number of consumers. The scaffold comprised proanthocyanidins, dialdehyde chitosan, collagen, and different proportions of yeast proteins (YP). The results indicated that the scaffold possessed excellent mechanical properties and biocompatibility, and supported cell proliferation and myogenic differentiation. Additionally, we evaluated the texture characteristics of the cultured meat models and traditional beef and discovered that the YP30 cultured meat model had similar springiness and chewiness as beef. Subsequently, further analyzed the similarity between the cultured meat models and traditional beef in appearance, taste, and nutrition. Further results illustrated that the yeast protein cultured meat model exhibited a complete model structure and comparable color and taste to beef after frying. Moreover, it was concluded that the protein content of the YP30 cultured meat model was closer to that of beef. These findings suggested that the edible scaffold using yeast proteins has enormous potential to facilitate the sustainable development of the cell-cultured meat industry.
Collapse
Affiliation(s)
- Yafang Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhihao Zhong
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Noshaba Munawar
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|