1
|
Zhang H, Liu F, Wu P, Li C, Chen Q, Wu H, Qi X. Degradation of (1→3)(1→6)-α-D-dextran by ultrasound: Molecular weight, viscosity and kinetics. Int J Biol Macromol 2024; 283:137446. [PMID: 39522925 DOI: 10.1016/j.ijbiomac.2024.137446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The (1→3)(1→6)-α-D-dextran (alternating dextran) produced by Leuconostoc citreum SK24.002 is a novel functional exopolysaccharide, and its low molecular weight derivatives have potential applications in the food, pharmaceutical, and chemical industries. In this work, we used sonication, a green polysaccharide disruption method, to study the degradation process of this dextran by changing the intensity and duration of the sonication treatment and the concentration of the dextran solution. The molecular weight and viscosity of the dextran products were measured with a high-performance size exclusion column chromatography-multi-angle laser light scattering-refractive index system and by rheometry, respectively. The degradation efficiency of dextran was directly affected by the duration and intensity of the ultrasonic treatment and the concentration of the dextran solution. The polydispersity index fluctuated as the duration of the sonication treatment increased. The combination of a high intensity (672 W/cm2) and long (120 min) sonication treatment and a low solution concentration (3 g dextran/100 mL) was most effective for reducing the apparent and complex viscosities of dextran. The storage modulus of dextran was always slightly larger than its loss modulus, indicating that it formed a gel-like structure. The second-order kinetic model (1/Mwt - 1/Mw0 = kt) was the best fit to explain the degradation dynamics of dextran by sonication at intensities of 168 W/cm2-834 W/cm2 and with dextran solution concentrations of 1 g/100 mL - 7 g/100 mL. Our findings show that sonication is an effective way to reduce the molecular weight of alternating dextran.
Collapse
Affiliation(s)
- Huanxin Zhang
- School of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China
| | - Feifan Liu
- School of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China
| | - Ping Wu
- School of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China.
| | - Cheng Li
- School of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, China
| | - Qiangju Chen
- Jiangsu Haiwang Health Biotechnology Co., Ltd., Taizhou, Jiangsu 225300, China
| | - Hongxia Wu
- Jiangsu Haiwang Health Biotechnology Co., Ltd., Taizhou, Jiangsu 225300, China
| | - Xinpei Qi
- Jiangsu Haiwang Health Biotechnology Co., Ltd., Taizhou, Jiangsu 225300, China
| |
Collapse
|
2
|
Gan CD, Wang H, Gou M, Yang JY, Tang YQ. Enhancement mechanism of xanthan gum production in Xanthomonas campestris induced by atmospheric and room-temperature plasma (ARTP) mutagenesis. Int J Biol Macromol 2024; 283:137628. [PMID: 39547629 DOI: 10.1016/j.ijbiomac.2024.137628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Xanthan gum, produced by the aerobic fermentation of carbohydrates by Xanthomonas campestris, is a significant natural and industrial biopolymer known for its exceptional properties. Enhancing the yield of xanthan gum production remains a critical challenge. This study employed atmospheric and room temperature plasma (ARTP) technology to induce mutagenesis in X. campestris, resulting in a high-yielding strain, X20. The X20 mutant exhibited a substantial increase in xanthan gum yield, ranging from 13.3 % to 30.0 % over the starting strain across NaCl concentrations of 0, 6.0, and 8.0 g/L, along with improved viscosity and molecular weight. In the whole genome of X20 mutant, a total of 80 variant sites differing from the reference genome were identified, involving 76 mutated genes. Among these, 19 were missense mutations primarily associated with the two-component system. Transcriptome analysis highlighted their role in enhancing flagellar movement, biofilm formation, and metabolic synthesis, thereby elevating the capability of the mutant strain in xanthan gum production. This study demonstrates the potential of ARTP as an effective tool for microbial mutagenesis breeding, providing theoretical guidance for future studies on the synthesis regulation of xanthan gum and the engineering modification of X. campestris.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Hong Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Tan Q, Shen Y, Sun J, Jian T, Lu W, Wu S, Zhao Z, Lei Q, Lin H. Effects of calcium ions and polysaccharides type on transparent exopolymer particle formation and the related fouling mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175775. [PMID: 39197790 DOI: 10.1016/j.scitotenv.2024.175775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Organics and divalent cations are the primary barriers constraining the performance of membrane technology, while the interactions between them and the detailed mechanisms of their impacts are still lacking in-depth analysis. In this study, sodium alginate and xanthan gum were selected as polysaccharides models, and the formation of transparent extracellular polymer particles (TEP) was assessed to examine the effect of Ca2+ and polysaccharides type on membrane fouling from both qualitative and quantitative perspectives. The results revealed that higher Ca2+ concentrations led to a greater abundance of TEP, and the transformation of TEP microstructure is a key factor for the membrane fouling change indicated by specific filtration resistance (SFR). TEP formed by sodium alginate underwent a transformation from amorphous-TEP (a-TEP) form to particle-TEP (p-TEP), corresponding to a unimodal pattern of SFR variation. With increasing Ca2+ concentration, the molecular interactions of xanthan gum became stronger, resulting in larger fibrous a-TEP and a continuous SFR increase. According to the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, TEP formed by xanthan gum exhibited higher adhesion energy, thus causing more severe membrane fouling. The SFR variation of the TEP system can be satisfactorily explained by the conception of chemical potential change in the filtration process depicted in Flory-Huggins theory. This study is the first work to introduce models regarding chemical potential and TEP microstructure, linking the system chemical potential and TEP microstructure with membrane fouling indicated by SFR. As all, this study provided a new perspective for analyzing the polysaccharide fouling behavior via TEP determination and further enhanced the understanding through thermodynamic analysis.
Collapse
Affiliation(s)
- Qiyin Tan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Yue Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahao Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Tao Jian
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Wen Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Sijin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Zengjian Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Qian Lei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
4
|
Kang J, Sun X, Yu S, Wang Z, Zhang J, Zhao Y, Wang S, Guo Q. Effects of galactomannans of varied structural features on the functional characteristics and in vitro digestibility of wheat starch. Int J Biol Macromol 2024; 281:136295. [PMID: 39370075 DOI: 10.1016/j.ijbiomac.2024.136295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
This study explores the effects of four natural galactomannans (GMs) with varying degrees of branching (fenugreek gum, guar gum, tara gum and locust bean gum) on the functional properties and in vitro digestibility of wheat starch (WS). Results from rapid viscosity analysis (RVA) and low-field nuclear magnetic resonance (LF-NMR) analysis revealed that GMs with lower branching degrees were correlated with higher paste viscosity, peak viscosity, and greater water-holding capacity in the WS-GM mixtures. Additionally, these lower branching GMs more effectively inhibited amylose leaching during starch gelatinization, leading to a softer gel texture and increased transparency of the mixtures. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis demonstrated that starch mixtures containing lower branching GMs exhibited reduced relative crystallinity and enthalpy values during aging. Furthermore, the incorporation of lower branching GMs resulted in decreased starch digestibility in vitro, thereby enhanced resistant starch content. These findings highlight the potential of selectively branched GMs to modulate the functional properties and nutritional profile of WS, providing a promising approach for the development of starch-based products with improved health benefits.
Collapse
Affiliation(s)
- Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaopei Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Yu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zeyu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jixiang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yi Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
Zong L, Teng R, Zhang H, Liu W, Feng Y, Lu Z, Zhou Y, Fan Z, Li M, Pu X. Ultrasound-Responsive HBD Peptide Hydrogel with Antibiofilm Capability for Fast Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406022. [PMID: 39248340 PMCID: PMC11558141 DOI: 10.1002/advs.202406022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/26/2024] [Indexed: 09/10/2024]
Abstract
Despite advancements in therapeutic agents for diabetic chronic wounds, challenges such as suboptimal bioavailability, intricate disease milieus, and inadequate delivery efficacy have impeded treatment outcomes. Here, ultrasound-responsive hydrogel incorporated with heparin-binding domain (HBD) peptide nanoparticles is developed to promote diabetic wound healing. HBD peptide, derived from von Willebrand Factor with angiogenic activity, are first engineered to self-assemble into nanoparticles with enhanced biostability and bioavailability. Ultrasound responsive cargo release and hydrogel collapses are first verified through breakage of crosslinking. In addition, desired antioxidant and antibacterial activity of such hydrogel is observed. Moreover, the degradation of hydrogel under ultrasound stimulation into smaller fragments facilitated the deeper wound penetration of ≈400 µm depth. Complete wound closure is observed from diabetic mice with chronic wounds after being treated with the proposed hydrogel. In detail, in vivo studies revealed that hydrogels loaded with HBD peptide nanoparticles increased the levels of angiogenesis-related growth factors (VEGF-A, CD31, and α-SMA) to effectively accelerate wound repair. Overall, this study demonstrates that ultrasound-responsive HBD peptide hydrogel provides a synergistic therapeutic strategy for external biofilm elimination and internal effective delivery for diabetic wounds with biofilm infection.
Collapse
Affiliation(s)
- Lanlan Zong
- State Key Laboratory of Antiviral DrugsHenan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River BasinSchool of PharmacyHenan UniversityN. Jinming Ave.Kaifeng475004P. R. China
| | - Runxin Teng
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji University4800 CaoanRoadShanghai201804P. R. China
| | - Huiqi Zhang
- State Key Laboratory of Antiviral DrugsHenan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River BasinSchool of PharmacyHenan UniversityN. Jinming Ave.Kaifeng475004P. R. China
| | - Wenshang Liu
- State Key Laboratory of Antiviral DrugsHenan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River BasinSchool of PharmacyHenan UniversityN. Jinming Ave.Kaifeng475004P. R. China
- Department of DermatologyShanghai Children's Medical CenterShanghai Jiaotong University School of MedicineShanghai200127P. R. China
| | - Yu Feng
- State Key Laboratory of Antiviral DrugsHenan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River BasinSchool of PharmacyHenan UniversityN. Jinming Ave.Kaifeng475004P. R. China
| | - Zhengmao Lu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Naval Medical UniversityShanghai200433P. R. China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200434P. R. China
| | - Zhen Fan
- Department of Polymeric MaterialsSchool of Materials Science and EngineeringTongji University4800 CaoanRoadShanghai201804P. R. China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, School of MedicineTongji UniversityShanghai200434P. R. China
| | - Meng Li
- Department of DermatologyShanghai Children's Medical CenterShanghai Jiaotong University School of MedicineShanghai200127P. R. China
| | - Xiaohui Pu
- State Key Laboratory of Antiviral DrugsHenan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River BasinSchool of PharmacyHenan UniversityN. Jinming Ave.Kaifeng475004P. R. China
| |
Collapse
|
6
|
Świerczyńska M, Kudzin MH, Chruściel JJ. Poly(lactide)-Based Materials Modified with Biomolecules: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5184. [PMID: 39517460 PMCID: PMC11546716 DOI: 10.3390/ma17215184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Poly(lactic acid) (PLA) is characterized by unique features, e.g., it is environmentally friendly, biocompatible, has good thermomechanical properties, and is readily available and biodegradable. Due to the increasing pollution of the environment, PLA is a promising alternative that can potentially replace petroleum-derived polymers. Different biodegradable polymers have numerous biomedical applications and are used as packaging materials. Because the pure form of PLA is delicate, brittle, and is characterized by a slow degradation rate and a low thermal resistance and crystallization rate, these disadvantages limit the range of applications of this polymer. However, the properties of PLA can be improved by chemical or physical modification, e.g., with biomolecules. The subject of this review is the modification of PLA properties with three classes of biomolecules: polysaccharides, proteins, and nucleic acids. A quite extensive description of the most promising strategies leading to improvement of the bioactivity of PLA, through modification with these biomolecules, is presented in this review. Thus, this article deals mainly with a presentation of the major developments and research results concerning PLA-based materials modified with different biomolecules (described in the world literature during the last decades), with a focus on such methods as blending, copolymerization, or composites fabrication. The biomedical and unique biological applications of PLA-based materials, especially modified with polysaccharides and proteins, are reviewed, taking into account the growing interest and great practical potential of these new biodegradable biomaterials.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Łódź, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
7
|
Kurt A, Atalar I. Steady and dynamic shear rheology of aqueous solutions of quince seed gum combinations with locust bean or xanthan gums. Int J Biol Macromol 2024; 274:133409. [PMID: 38925200 DOI: 10.1016/j.ijbiomac.2024.133409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
This study presents the rheological properties of quince seed gum (Q) solution in comparison with xanthan gum (X) and locust bean gums (L) and the polymeric interactions of different ratios of Q:X and Q:L blends (1:1, 1:3 and 3:1). Q exhibits greater and stronger elastic properties than X and L. The frequency and temperature stability of Q and X are both higher than that of L. The viscoelastic properties of Q:X and Q:L solutions were found to be higher than those of the individual solutions. The higher polymer entanglements observed in Q:L blends resulted in enhanced synergistic interactions and thixotropy compared to Q:X. 3QX exhibited an enhanced elastic structure, but the best synergism was observed for 3QL due to the establishment of a stronger intermolecular bond for gelling. The lower tan δ observed with increasing Q indicate a Q-induced synergistic interaction with L. At all temperatures, 3QL showed the highest thixotropy. The combination of Q and L resulted in the formation of a true gel, with the higher gel strength being observed for QL and 3QL. This study shows that Q:L and Q:X combinations can yield desired flow properties. In particular, L provides a firmer gel network with Q.
Collapse
Affiliation(s)
- Abdullah Kurt
- Department of Food Engineering, Aksehir Faculty of Engineering and Architecture, Selcuk University, 42550 Konya, Turkey.
| | - Ilyas Atalar
- Department of Food Engineering, Faculty of Agriculture, Eskisehir Osmangazi University, 26160 Eskisehir, Turkey
| |
Collapse
|
8
|
Song A, Wu Y, Li H, Li C. Development of xanthan gum intelligent oil-in-water ink and its application in pork freshness preservation. Int J Biol Macromol 2024; 275:133576. [PMID: 38950802 DOI: 10.1016/j.ijbiomac.2024.133576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
To optimize the stability of oil-based inks and ensure their wide application in freshness indication, new natural indicator inks were prepared using a stable oil-in-water structure. This study selected natural Lycium ruthenicum anthocyanin as the dye and glucose as the pigment carrier. Soybean oil was introduced as a linker and xanthan gum as a thickener, and an oil-in-water ink with the function of freshness indication was successfully developed. In ensuring the safety of ink labels for use on food packaging, particular attention is paid to the origin and properties of the materials used. All ingredients are of food-grade or bio-friendly provenance, thereby ensuring the safety of the product when in direct contact with food. We measured the viscosity, particle size and fineness of the ink for micro characterization and evaluated its macro printing performance by its printing effect on A4 paper. According to the experimental results, when the water-oil ratio of the ink is 10:5, the average particle size of the emulsion system is 822.83 nm, and the fineness reaches 5 μm. These values are relatively low, which indicates that the stability of the ink system is high at this time, and the ink shows excellent rheological and printing characteristics. With this water-to-oil ratio, the ink can show the best results when printed on A4 paper, clearly displaying image details. In addition, in fresh pork applications, inks with a 10: 5 water-to-oil ratio provide an accurate and highly sensitive indication of the freshness of pork. When the freshness of the pork changes, the ink color responds promptly. This high sensitivity makes the ink ideal for use as a food freshness indication tool, providing consumers with an intuitive and reliable reference for pork freshness. As a further innovation, combining this ink-printed label with a WeChat app not only allows consumers to know the freshness of the food in real-time but also tracks the supply chain information of the food, providing a more comprehensive application prospect for freshness-indicating products.
Collapse
Affiliation(s)
- Anning Song
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Yanglin Wu
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Hao Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
9
|
Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, Zhou M, Yong YC, Liu J. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydr Polym 2024; 335:122078. [PMID: 38616098 DOI: 10.1016/j.carbpol.2024.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.
Collapse
Affiliation(s)
- Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Mengbo Zhou
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
10
|
Olakanmi SJ, Bharathi VSK, Jayas DS, Paliwal J. Innovations in nondestructive assessment of baked products: Current trends and future prospects. Compr Rev Food Sci Food Saf 2024; 23:e13385. [PMID: 39031741 DOI: 10.1111/1541-4337.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/13/2024] [Accepted: 05/18/2024] [Indexed: 07/22/2024]
Abstract
Rising consumer awareness, coupled with advances in sensor technology, is propelling the food manufacturing industry to innovate and employ tools that ensure the production of safe, nutritious, and environmentally sustainable products. Amidst a plethora of nondestructive techniques available for evaluating the quality attributes of both raw and processed foods, the challenge lies in determining the most fitting solution for diverse products, given that each method possesses its unique strengths and limitations. This comprehensive review focuses on baked goods, wherein we delve into recently published literature on cutting-edge nondestructive methods to assess their feasibility for Industry 4.0 implementation. Emphasizing the need for quality control modalities that align with consumer expectations regarding sensory traits such as texture, flavor, appearance, and nutritional content, the review explores an array of advanced methodologies, including hyperspectral imaging, magnetic resonance imaging, terahertz, acoustics, ultrasound, X-ray systems, and infrared spectroscopy. By elucidating the principles, applications, and impacts of these techniques on the quality of baked goods, the review provides a thorough synthesis of the most current published studies and industry practices. It highlights how these methodologies enable defect detection, nutritional content prediction, texture evaluation, shelf-life forecasting, and real-time monitoring of baking processes. Additionally, the review addresses the inherent challenges these nondestructive techniques face, ranging from cost considerations to calibration, standardization, and the industry's overreliance on big data.
Collapse
Affiliation(s)
- Sunday J Olakanmi
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vimala S K Bharathi
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Digvir S Jayas
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, Canada
- President's Office, 4401 University Drive West, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, 75 Chancellors Circle, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Li ZX, Deng HQ, Jiang J, He ZQ, Li DM, Ye XG, Chen Y, Hu Y, Huang C. Effect of hydrothermal treatment on the rheological properties of xanthan gum. Int J Biol Macromol 2024; 270:132229. [PMID: 38734337 DOI: 10.1016/j.ijbiomac.2024.132229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
In this study, the effect of hydrothermal treatment with different temperatures (120-180 °C) on the rheological properties of xanthan gum was evaluated. When the temperature of hydrothermal treatment was relatively low (120 °C), the rheological properties of the hydrothermally treated xanthan gum was similar to the untreated xanthan gum (pseudoplastic and solid-like/gel-like behavior). However, as the temperature of hydrothermal treatment was higher, the rheological properties of the hydrothermally treated xanthan gum changed greatly (e.g., a wider range of Newtonian plateaus in flow curves, existence of a critical frequency between the storage modulus (G') and the loss modulus (G") in the dynamic viscoelasticity measurement, variation of complex viscosity). Although the hydrothermal treatment showed little influence on the functional groups of xanthan gum, it altered the micromorphology of xanthan gum from uneven and rough lump-like to thinner and smoother flake-like. In addition, higher concentration (2 %) of hydrothermally treated xanthan gum made its viscosity close to that of the untreated xanthan gum (1 %). Besides, hydrothermal treatment also affected the effect of temperature and salt (CaCl2) adding on the rheological properties of xanthan gum. Overall, this study can provide some useful information on the rheological properties of xanthan gum after hydrothermal treatment.
Collapse
Affiliation(s)
- Zhi-Xuan Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Hui-Qiong Deng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Jie Jiang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Zi-Qing He
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Dong-Mei Li
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Xi-Guang Ye
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| |
Collapse
|
12
|
Choudhary A, Bains A, Sridhar K, Dhull SB, Goksen G, Sharma M, Chawla P. Recent advances in modifications of exudate gums: Functional properties and applications. Int J Biol Macromol 2024; 271:132688. [PMID: 38806080 DOI: 10.1016/j.ijbiomac.2024.132688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Gums are high-molecular-weight compounds with hydrophobic or hydrophilic characteristics, which are mainly comprised of complex carbohydrates called polysaccharides, often associated with proteins and minerals. Various innovative modification techniques are utilized, including ultrasound-assisted and microwave-assisted techniques, enzymatic alterations, electrospinning, irradiation, and amalgamation process. These methods advance the process, reducing processing times and energy consumption while maintaining the quality of the modified gums. Enzymes like xanthan lyases, xanthanase, and cellulase can selectively modify exudate gums, altering their structure to enhance their properties. This precise enzymatic approach allows for the use of exudate gums for specific applications. Exudate gums have been employed in nanotechnology applications through techniques like electrospinning. This enables the production of nanoparticles and nanofibers with improved properties, making them suitable for the drug delivery system, tissue engineering, active and intelligient food packaging. The resulting modified exudate gums exhibit improved rheological, emulsifying, gelling, and other functional properties, which expand their potential applications. This paper discusses novel applications of these modified gums in the pharmaceutical, food, and industrial sectors. The ever-evolving field presents diverse opportunities for sustainable innovation across these sectors.
Collapse
Affiliation(s)
- Anchal Choudhary
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey.
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
13
|
Xiao M, Jia X, Kang J, Liu Y, Zhang J, Jiang Y, Liu G, Cui SW, Guo Q. Unveiling the breadmaking transformation: Structural and functional insights into Arabinoxylan. Carbohydr Polym 2024; 330:121845. [PMID: 38368117 DOI: 10.1016/j.carbpol.2024.121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
To understand the changes in arabinoxylan (AX) during breadmaking, multi-step enzyme digestion was conducted to re-extract arabinoxylan (AX-B) from AX-fortified bread. Their structural changes were compared using HPSEC, HPAEC, FT-IR, methylation analysis, and 1H NMR analysis; their properties changes in terms of enzymatic inhibition activities and in vitro fermentability against gut microbiota were also compared. Results showed that AX-B contained a higher portion of covalently linked protein while the molecular weight was reduced significantly after breadmaking process (from 677.1 kDa to 15.6 kDa); the structural complexity of AX-B in terms of the degree of branching was increased; the inhibition activity against α-amylase (76.81 % vs 73.89 % at 4 mg/mL) and α-glucosidase (64.43 % vs 58.08 % at 4 mg/mL) was improved; the AX-B group produced a higher short-chain fatty acids concentration than AX (54.68 ± 7.86 mmol/L vs 44.03 ± 4.10 mmol/L). This study provides novel knowledge regarding the structural and properties changes of arabinoxylan throughout breadmaking, which help to predict the health benefits of fibre-fortified bread and achieve precision nutrition.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666, Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China.
| | - Jixiang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yueru Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guorong Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Steve W Cui
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
14
|
Salehi F, Inanloodoghouz M. Effects of ultrasonic intensity and time on rheological properties of different concentrations of xanthan gum solution. Int J Biol Macromol 2024; 263:130456. [PMID: 38417761 DOI: 10.1016/j.ijbiomac.2024.130456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/03/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
This work aimed to examine the impacts of ultrasonic treatments (40 kHz) at different intensities (0, 75, and 150 W) and time (0, 5, 10, 15, and 20 min) on the rheological properties of different concentrations (at 3 levels of 0.10, 0.15, and 0.20 %, w/v) of xanthan gum solution (XGS). The results confirmed that the apparent viscosity of XGS decreased from 68.75 to 30.38 mPa.s with increasing ultrasonic power from 0 to 150 W (shear rate = 61 s-1, 0.2 %, 20 min). In addition, the apparent viscosity of XGS decreased by enhancing the sonication time. Various rheological equations (power-law, Bingham, Herschel-Bulkley, Casson, and Vocadlo) were employed to fit the empirical values, and the results confirmed that the power-law equation was the best fit to describe the flow behaviour of XGSs. The consistency coefficient (CC) of XGS significantly decreased from 1222.7 to 635.1 mPa.sn (p < 0.05) while ultrasonic power enhanced from 0 to 150 W (0.2 %, 10 min). Furthermore, the CC of XGS decreased significantly (p < 0.05) while the duration of ultrasound treatment enhanced. The flow behaviour index (FBI) of various concentrations of XGS enhanced while the intensity and duration of ultrasound treatment enhanced.
Collapse
Affiliation(s)
- Fakhreddin Salehi
- Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran.
| | - Moein Inanloodoghouz
- Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
15
|
Bajaj K, Kumar A, Gill PPS, Jawandha SK, Kaur N. Xanthan gum coatings augmented with lemongrass oil preserve postharvest quality and antioxidant defence system of Kinnow fruit under low-temperature storage. Int J Biol Macromol 2024; 262:129776. [PMID: 38281532 DOI: 10.1016/j.ijbiomac.2024.129776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Kinnow mandarin is an important citrus fruit that undergoes various postharvest qualitative losses. Therefore, the present study aimed to investigate the effect of polysaccharide-based xanthan gum (XG) coatings and lemongrass essential oil (LG) on the nutritive quality of Kinnow mandarins stored at 5-7 °C, 90-95 % RH for 75 days. The results revealed that in comparison to control the coatings maintained the fruit titratable acidity (TA), soluble solid content (SSC), ascorbic acid (AsA) content, total flavonoid content (TFC), and juice content, along with reduced weight loss and spoilage incidence. The coated fruits also exhibited higher sensory quality, total antioxidant activity (TAA), and activities of enzymes; catalase (CAT), peroxidase (POD), and phenylalanine ammonia-lyase (PAL). At the end of storage, the fruits coated with XG 1.0 % + LG 1.0 % exhibited maximum TA (0.69 %), AsA content (203.5 mg L-1), and TFC (0.21 mg g-1) with minimum weight loss (7.57 %) and spoilage (3.01 %) and SSC (11.87 %). The scanning electron microscopic (SEM) images of the coated fruits also exhibited smooth surfaces with closed stomata pores. Overall, XG 1.0 % + LG 1.0 % proved as a potential postharvest treatment for maintaining the nutritive quality of Kinnow under low-temperature storage.
Collapse
Affiliation(s)
- Kashish Bajaj
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Anil Kumar
- Regional Research Station, Abohar, Punjab Agricultural University, Ludhiana, Punjab, India
| | - P P S Gill
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - S K Jawandha
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Nirmaljit Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
16
|
Amenaghawon AN, Igemhokhai S, Eshiemogie SA, Ugbodu F, Evbarunegbe NI. Data-driven intelligent modeling, optimization, and global sensitivity analysis of a xanthan gum biosynthesis process. Heliyon 2024; 10:e25432. [PMID: 38322872 PMCID: PMC10845917 DOI: 10.1016/j.heliyon.2024.e25432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
In this study, the focus was to produce xanthan gum from pineapple waste using Xanthomonas campestris. Six machine learning models were employed to optimize fermentation time and key metabolic stimulants (KH2PO4 and NH4NO3). The production of xanthan gum was optimized using two evolutionary optimization algorithms, particle swarm optimization, and genetic algorithm while the importance of input features was ranked using global sensitivity analysis. KH2PO4 was the most important input and was found to be beneficial for xanthan gum production, while a limited amount of nitrogen was needed. The extreme learning machine model was the most adequate for modeling xanthan gum production, predicting a maximum xanthan yield of 10.34 g/l (an 11.9 % increase over the control) at a fermentation time of 3 days, KH2PO4 of 15 g/l, and NH4NO3 of 2 g/l. This study has provided important insights into the intelligent modeling of a biostimulated process for valorizing pineapple waste.
Collapse
Affiliation(s)
- Andrew Nosakhare Amenaghawon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Shedrach Igemhokhai
- Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria
- Department of Petroleum Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Stanley Aimhanesi Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Favour Ugbodu
- Bioresources Valorization Laboratory, Department of Chemical Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Nelson Iyore Evbarunegbe
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
17
|
Kamer DDA, Kaynarca GB, Yılmaz OŞ, Gümüş T. Waste to value: Enhancing xanthan gum hydrogel with wine lees extract for optimal performance. Int J Biol Macromol 2024; 259:129342. [PMID: 38216009 DOI: 10.1016/j.ijbiomac.2024.129342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
The current study investigated the potential of utilizing wine lees extract (WLE) from red wine to enhance the sustainability and cost-effectiveness of xanthan gum (XG). A novel hydrogel system was successfully generated by cross-linking WLE and XG. Response surface methodology (RSM) was used to thoroughly analyze the characteristics of this novel hydrogel to understand its behavior and possible applications. Consistency index (K), flow behavior index (n), water holding capacity (%), and oil binding capacity (%) of the cross-linked hydrogels were optimized, and the best formulation was determined to be 0.81 % XG + 0.67 % WLE and crosslink temperature of 47 °C. The addition of WLE (0-1 % w/v) to different concentrations of XG (0-1 % w/v) was found to have a notable impact on the rheological properties, but changes in cross-link temperature (45-65 °C) did not have a significant effect. The activation energy was increased by incorporating WLE at XG concentration above 0.5 %, indicating a more robust and stable structure. FTIR and SEM analyses confirmed the chemical bonding structure of the optimum hydrogel. Incorporating WLE could significantly improve the functional properties of XG hydrogels, allowing the development of healthier product formulations.
Collapse
Affiliation(s)
| | - Gülce Bedis Kaynarca
- Department of Food Engineering, Faculty of Engineering, Kirklareli University, 39100 Kirklareli, Turkey
| | - Oylum Şimal Yılmaz
- Department of Food Engineering, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey
| | - Tuncay Gümüş
- Department of Food Engineering, Tekirdag Namik Kemal University, 59030 Tekirdag, Turkey.
| |
Collapse
|
18
|
Salehi F, Inanloodoghouz M. Rheological properties and color indexes of ultrasonic treated aqueous solutions of basil, Lallemantia, and wild sage gums. Int J Biol Macromol 2023; 253:127828. [PMID: 37924915 DOI: 10.1016/j.ijbiomac.2023.127828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/09/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
This research aimed to analyze the impacts of sonication on the rheological properties and color indexes of aqueous solutions of Basil seed gum (BSG), Lallemantia seed gum (LSG), and Wild sage seed gum (WSG). The apparent viscosity (AV) of aqueous solutions of gums decreased with increasing shear rate (SR) from 12.2 s-1 to 134.5 s-1. Also, the AV (at SR = 61 s-1) of BSG, LSG, and WSG solutions reduced from 0.015 to 0.006 Pa.s, 0.023 to 0.010 Pa.s, and 0.009 to 0.004 Pa.s with enhancing the sonication time from 0 to 20 min, respectively. Various rheological equations were employed to fit the empirical values, and the findings confirmed that the Power law (PL) model was the best fit to explain the flow behaviour of these gums solutions. The consistency coefficient (k-index) of BSG, LSG, and WSG solutions significantly (p < 0.05) reduced from 0.108 to 0.017 Pa.sn, 0.143 to 0.033 Pa.sn, and 0.034 to 0.014 Pa.sn with increasing sonication time from 0 to 20 min, respectively. The flow behaviour index (n-index) of the gums solutions increased with increasing sonication time. By applying ultrasound, the lightness (L⁎) and blueness/yellowness (b⁎) indexes of the solutions were increased, and the greenness/redness (a⁎) index was reduced.
Collapse
Affiliation(s)
- Fakhreddin Salehi
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
| | - Moein Inanloodoghouz
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
19
|
Gao T, Wu X, Gao Y, Teng F, Li Y. Co-Delivery System of Vitamin B 12 and Vitamin E Using a Binary W/O/W Emulsion Based on Soybean Isolate Protein-Xanthan Gum/Carrageenan: Emulsification Properties, Rheological Properties, Structure, Stability, and Digestive Characteristics. Foods 2023; 12:4361. [PMID: 38231848 DOI: 10.3390/foods12234361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, the soybean protein isolate (SPI)-xanthan gum (XG) or carrageenan (CA) W/O/W emulsions for the co-delivery of vitamin B12 and vitamin E were prepared. The effects of XG and CA concentrations on the physicochemical properties and digestive characteristics of the emulsions were also investigated. The addition of XG and CA improved the SPI aggregation and increased its electrostatic repulsion so that more SPI was adsorbed at the phase interface. The emulsifying activity index and emulsifying stability index increased to 24.09 (XG 0.4%) and 14.00 (CA 0.5%) and 151.08 (XG 0.4%) and 135.34 (CA 0.5%), respectively. The adsorbed protein content increased to 88.90% (XG 0.4%) and 88.23% (CA 0.5%), respectively. Moreover, the encapsulation efficiencies of vitamin B12 and vitamin E were increased to 86.72% (XG 0.4%) and 86.47 (CA 0.5%) and 86.31% (XG 0.4%) and 85.78% (CA 0.5%), respectively. The bioaccessibility of vitamin B12 and vitamin E increased to 73.53% (XG 0.4%) and 71.32% (CA 0.5%) and 68.86% (XG 0.4%) and 68.74% (CA 0.5%). The best properties of the emulsions were obtained at a 0.4% concentration of XG and 0.5% of CA. This study offers a novel system for delivering bioactive substances, which is favorable for the advancement of food with delivery capability in food processing.
Collapse
Affiliation(s)
- Tian Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xixi Wu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yiting Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Zhang Y, Dou B, Jia J, Liu Y, Zhang N. A Study on the Structural and Digestive Properties of Rice Starch-Hydrocolloid Complexes Treated with Heat-Moisture Treatment. Foods 2023; 12:4241. [PMID: 38231690 DOI: 10.3390/foods12234241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Rice starch-hydrophilic colloid complexes (SHCs) were prepared by incorporating xanthan gum and locust bean gum into natural rice starch. Subsequently, they underwent hygrothermal treatment (H-SHC) to investigate their structural and digestive properties with varying colloid types and added amounts of H-SHC. The results demonstrated that heat-moisture treatment (HMT) led to an increase in resistant starch (RS) content in rice starch. This effect was more pronounced after the addition of hydrophilic colloid, causing RS content to surge from 8.42 ± 0.39% to 38.36 ± 3.69%. Notably, the addition of locust bean gum had a more significant impact on enhancing RS content, and the RS content increased with the addition of hydrophilic colloids. Enzyme digestion curves indicated that H-SHC displayed a lower equilibrium concentration (C∞), hydrolysis index (HI), and gluconeogenesis index (eGI). Simultaneously, HMT reduced the solubility and swelling power of starch. However, the addition of hydrophilic colloid led to an increase in the solubility and swelling power of the samples. Scanning electron microscopy revealed that hydrophilic colloid encapsulated the starch granules, affording them protection. X-ray diffraction (XRD) showed that HMT resulted in the decreased crystallinity of the starch granules, a trend mitigated by the addition of hydrophilic colloid. Infrared (IR) results demonstrated no formation of new covalent bonds but indicated increased short-range ordering in H-SHC. Rapid viscosity analysis and differential scanning calorimetry indicated that HMT substantially decreased peak viscosity and starch breakdown, while it significantly delayed the onset, peak, and conclusion temperatures. This effect was further amplified by the addition of colloids. Rheological results indicated that H-SHC displayed lower values for G', G″, and static rheological parameters compared to natural starch. In summary, this study offers valuable insights into the development of healthy, low-GI functional foods.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Boxin Dou
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Jianhui Jia
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Ying Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|