1
|
Huang L, Peng J, Tan M, Fang J, Li K. An efficient preparation process of sisal fibers via the specialized retting microorganisms: Based on the ideal combination of degumming-related enzymes for the effective removal of non-cellulosic macromolecules. Int J Biol Macromol 2024; 274:133416. [PMID: 38925202 DOI: 10.1016/j.ijbiomac.2024.133416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Bioaugmentation retting with the specialized pectinolytic and xylanolytic microorganisms can accelerate the removal of non-cellulosic macromolecules around plant fibers, thus shortening retting time and facilitating fiber quality. Currently, few specialized microorganisms have been explored for the retting of sisal fibers. The present study excavated the retting fungi including Aspergillus micronesiensis HD 3-6, Penicillium citrinum HD 3-12-3, and Cladosporium sp. HD 4-13 from the region-specific soil samples of planting sisal, and investigated their bioaugmentation retting effects on raw sisal leaves. Results showed that combination of the three fungi achieved the most excellent degumming efficiency (13.69 % of residual gum in sisal fibers) and the highest fiber yield (4.47 %). Furthermore, this fungi combination had the ideal enzymatic hydrolysis features with high activities of pectinase, xylanase and mannanase whereas a low activity of cellulase during the whole retting process, thus endowing the prepared sisal fibers with the lowest mass percentage of non-cellulosic macromolecules (9.76 wt%) and the highest cellulose content (89.23 wt%). SEM and FT-IR analysis further verified that the non-cellulosic substances around sisal fibers were efficiently removed. In summary, the consortia of the three fungi achieved ideal degumming-related enzymes for the removal of non-cellulosic macromolecules, thus acquiring the efficient preparation of sisal fibers.
Collapse
Affiliation(s)
- Linru Huang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong, Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Jieying Peng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong, Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Minghui Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong, Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Jianhao Fang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong, Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong, Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Lin H, Hong G, Fei M, Shen Y, Zhang X, Li J, Yang W, Li R. Micro- and nano-hybrid cellulose fibers prepared by straightforward and high-efficiency hot water soaking-assisted colloid grinding for high-performance cellulose paper. Carbohydr Polym 2024; 327:121688. [PMID: 38171695 DOI: 10.1016/j.carbpol.2023.121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Micro- and nano-hybrid cellulose fiber (MNCF) stands out as a versatile cellulosic nanomaterial with promising applications in various fields owing to its excellent intrinsic nature and outstanding characteristics. However, the inefficiency in preparing MNCF, attributed to a complex multi-step processing, hinders its widespread adoption. In this study, a straightforward and highly efficient method for MNCF preparation was developed via a hot water soaking-assisted colloid grinding strategy. Active water molecules in hot water facilitating stronger transverse shrinkage and longitudinal expansion in fiber crystallized region, and thus improving the fibrillation degree of cellulose fibers. As a result, MNCFs with a mean diameter of 37.5 ± 22.2 nm and high concentration (2 wt%) were successfully achieved though pure mechanical method. The micro and nano-hybrid structure leads to the corresponding resulting cellulose paper with micro- and nano-hybrid structure possesses a compact stacking and fewer defects, leading to extraordinary mechanical properties including tensile strength of 204.5 MPa, Young's modulus of 6.3 GPa and elongation of 10.1 %. This work achieves significant progress towards straightforward and highly efficient production of MNCFs, offering an appreciable prospect for the development of multifunctional MNCF-based materials.
Collapse
Affiliation(s)
- Huiping Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Guolong Hong
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Mingen Fei
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Yiqin Shen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Xinxiang Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China
| | - Jian Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China; Northeast Forestry University, Haerbin 150040, China
| | - Wenbin Yang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China.
| | - Ran Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350100, China.
| |
Collapse
|