1
|
Saberi Riseh R, Gholizadeh Vazvani M, Taheri A, Kennedy JF. Pectin-associated immune responses in plant-microbe interactions: A review. Int J Biol Macromol 2024; 273:132790. [PMID: 38823736 DOI: 10.1016/j.ijbiomac.2024.132790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
This review explores the role of pectin, a complex polysaccharide found in the plant cell wall, in mediating immune responses during interactions between plants and microbes. The objectives of this study were to investigate the molecular mechanisms underlying pectin-mediated immune responses and to understand how these interactions shape plant-microbe communication. Pectin acts as a signaling molecule, triggering immune responses such as the production of antimicrobial compounds, reinforcement of the cell wall, and activation of defense-related genes. Pectin functions as a target for pathogen-derived enzymes, enabling successful colonization by certain microbial species. The document discusses the complexity of pectin-based immune signaling networks and their modulation by various factors, including pathogen effectors and host proteins. It also emphasizes the importance of understanding the crosstalk between pectin-mediated immunity and other defense pathways to develop strategies for enhancing plant resistance against diseases. The insights gained from this study have implications for the development of innovative approaches to enhance crop protection and disease management in agriculture. Further investigations into the components and mechanisms involved in pectin-mediated immunity will pave the way for future advancements in plant-microbe interaction research.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Abdolhossein Taheri
- Department of Plant Protection, Faculty of Plant Production, University of agricultural Sciences and natural resources of Gorgan, Iran.
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
2
|
Hassanisaadi M, Kennedy JF, Rabiei A, Riseh RS, Taheri A. Nature's coatings: Sodium alginate as a novel coating in safeguarding plants from frost damages. Int J Biol Macromol 2024; 267:131203. [PMID: 38554900 DOI: 10.1016/j.ijbiomac.2024.131203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Frost damage remains a significant challenge for agricultural practices worldwide, leading to substantial economic losses and food insecurity. Practically, traditional methods for frost management have proven ineffective and come with several drawbacks, such as energy consumption and limited efficacy. Hence, proposing an anti-freezing coating can be an innovative idea. The potential of sodium alginate (SA) to construct anti-freezing hydrogels has been explored in several sciences. SA hydrogels can form protective films around plants as a barrier against freezing temperatures and ice crystals on the plant's surface. Sodium alginate exhibits excellent water retention, enhancing plant hydration during freezing conditions. This coating can provide insulation, effectively shielding the plant from frost damage. The advantages of SA as a coating material, such as its biocompatibility, biodegradability, and non-toxic nature, are highlighted. Therefore, the proposed use of SA as an innovative coating material holds promise for safeguarding plants from frost damage. Following SA potential and frost's huge damage, the present review provides a comprehensive overview of the recent developments in SA-based anti-freezing hydrogels, their applications, and their potential in agriculture as anti-freezing coatings. However, further research and field trials are necessary to optimize the application methods and understand the long-term effects on productivity.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Departement of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratory Ltd, WR15 8FF Tenbury Walls, United Kingdom.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Roohallah Saberi Riseh
- Departement of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran 771751735.
| | - Abdolhossein Taheri
- Department of plant protection, faculty of plant production, Gorgan university of Agricultural sciences and natural resources, Iran.
| |
Collapse
|
3
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Varma RS. A review of chitosan nanoparticles: Nature's gift for transforming agriculture through smart and effective delivery mechanisms. Int J Biol Macromol 2024; 260:129522. [PMID: 38246470 DOI: 10.1016/j.ijbiomac.2024.129522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Chitosan nanoparticles (CNPs) have emerged as a promising tool in agricultural advancements due to their unique properties including, biocompatability, biodegradability, non-toxicity and remarkable versatility. These inherent properties along with their antimicrobial, antioxidant and eliciting activities enable CNPs to play an important role in increasing agricultural productivity, enhancing nutrient absorption and improving pest management strategies. Furthermore, the nano-formulation of chitosan have the ability to encapsulate various agricultural amendments, enabling the controlled release of pesticides, fertilizers, plant growth promoters and biocontrol agents, thus offering precise and targeted delivery mechanisms for enhanced efficiency. This review provides a comprehensive analysis of the latest research and developments in the use of CNPs for enhancing agricultural practices through smart and effective delivery mechanisms. It discusses the synthesis methods, physicochemical properties, and their role in enhancing seed germination and plant growth, crop protection against biotic and abiotic stresses, improving soil quality and reducing the environmental pollution and delivery of agricultural amendments. Furthermore, the potential environmental benefits and future directions for integrating CNPs into sustainable agricultural systems are explored. This review aims to shed light on the transformative potential of chitosan nanoparticles as nature's gift for revolutionizing agriculture and fostering eco-friendly farming practices.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan 771751735, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
4
|
Moradi Pour M, Hassanisaadi M, Kennedy JF, Saberi Riseh R. A novel biopolymer technique for encapsulation of Bacillus velezensis BV9 into double coating biopolymer made by in alginate and natural gums to biocontrol of wheat take-all disease. Int J Biol Macromol 2024; 257:128526. [PMID: 38172030 DOI: 10.1016/j.ijbiomac.2023.128526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Bacillus velezensis has been known for its high potential in controlling agricultural diseases. Technological advances have opened new perspectives for producing effective formulations by reducing some of the obstacles to their use, such as instability and loss of activity due to exposure to adverse environmental conditions. Encapsulation is one of the new approaches in agricultural science. This research describes discoveries related to processes for the microencapsulation of B. velezensis with natural gums. The efficiency, survival, and controlled release of B. velesensis BV9 encapsulated with alginate mixed with zedo gum, mastic gum, and tragacanth gum were evaluated for this aim. Furthermore, under greenhouse conditions, the encapsulated cells were assessed to control Gaeumannomyces graminis var. tritici in wheat. The results indicated that all tested microcapsules protected >60 % of the bacterial cells. The Alginate-Zedo Gum (Alg-ZG) microcapsules showed a better-controlled release over two months. The greenhouse study indicated that treating wheat plants with Alg-ZG microcapsules was the most efficient treatment, suppressing 100 % of the pathogen. The results indicated that Alg-ZG is the most promising mixture to improve the survivability of B. velezensis BV9. Also, using natural gums and great potential of this formulation provides an effective and affordable fertilizers for agriculture.
Collapse
Affiliation(s)
- Mojde Moradi Pour
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WRI5 8FF Tenbury Well, United Kingdom
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran.
| |
Collapse
|
5
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Shafiei-Hematabad Z, Kennedy JF. Advancements in coating technologies: Unveiling the potential of chitosan for the preservation of fruits and vegetables. Int J Biol Macromol 2024; 254:127677. [PMID: 38287565 DOI: 10.1016/j.ijbiomac.2023.127677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Post-harvest losses of fruits and vegetables pose a significant challenge to the agriculture industry worldwide. To address this issue, researchers have turned to natural and eco-friendly solutions such as chitosan coatings. Chitosan, a biopolymer derived from chitin, has gained considerable attention due to its unique properties such as non-toxicity, biodegradability, biocompatibility and potential applications in post-harvest preservation. This review article provides an in-depth analysis of the current state of research on chitosan coatings for the preservation of fruits and vegetables. Moreover, it highlights the advantages of using chitosan coatings, including its antimicrobial, antifungal, and antioxidant properties, as well as its ability to enhance shelf-life and maintain the quality attributes of fresh product. Furthermore, the review discusses the mechanisms by which chitosan interacts with fruits and vegetables, elucidating its antimicrobial activity, modified gas permeability, enhanced physical barrier and induction of host defense responses. It also examines the factors influencing the effectiveness of chitosan coatings, such as concentration, molecular weight, deacetylation degree, pH, temperature, and application methods.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Zahra Shafiei-Hematabad
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WRI5 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
6
|
Saberi Riseh R. Advancing agriculture through bioresource technology: The role of cellulose-based biodegradable mulches. Int J Biol Macromol 2024; 255:128006. [PMID: 37977475 DOI: 10.1016/j.ijbiomac.2023.128006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Agriculture plays a pivotal role in meeting the world's ever-growing food demands. However, traditional agricultural practices often have negative consequences for the environment, such as soil erosion and chemical runoff. Recently, there has been a pressing need for advance agricultural practices. Cellulose-based mulches offer a solution by optimizing agricultural productivity while minimizing harm. These mulches are made from renewable bioresources derived from cellulose-rich materials. Compared to plastic mulches, cellulose-based alternatives show potential in improving nutrient retention, soil health, weed suppression, water conservation, and erosion mitigation. The article investigates the characteristics and application methods of cellulose-based mulches, highlighting their biodegradability, water retention, crop protection, and weed suppression capabilities. It also evaluates their economic feasibility, emphasizing their potential to transform sustainable farming practices. Overall, cellulose-based mulches have the potential to revolutionize agriculture, addressing environmental concerns while optimizing productivity. They represent a significant step toward a more sustainable and resilient agricultural system.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Departement of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran.
| |
Collapse
|