1
|
Yildirim A, Acay H. Methylene blue and malachite green dyes adsorption onto russula delica/bentonite/tripolyphosphate. Heliyon 2025; 11:e41250. [PMID: 39811303 PMCID: PMC11731215 DOI: 10.1016/j.heliyon.2024.e41250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/02/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
In the current research Russula delica mushroom/bentonite clay (RDBNC) as a low-cost bionanosorbent was investigated for adsorption of methylene blue (MB) and malachite green (MG) dye from contaminated water. The bionanosorbent was characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (FESEM), Thermal Gravimetric Analysis (TGA), and Zeta-potential techniques. Adsorption experiments of RDBNC for MB, MG dyes following Freundlich isotherm and pseudo second order kinetic models. To determine their effects on the adsorption efficiency, the adsorption parameters were investigated including dye concentration, contact time, temperature, and dosage of the bionanosorbent. The adsorption process can operate through three primary mechanisms: the π-π interaction, the hydrogen bonding, and electrostatic interactions between the surface of RDBNC and MB, MG dyes. Desorption results revealed that MB and MG dyes were effectively desorbed during the fourth cycle without a notable loss in adsorption capacity. The thermodynamics parameters including ΔH, ΔS, and ΔG, were determined, and the adsorption process was favorable, spontaneous, and exothermic for MB and MG. The results showed that RDBNC, which showed effective inhibition at low concentrations, especially against E. coli, can be used as a low-cost bionanosorbent synthesised for the first time to remove industrial dyes.
Collapse
Affiliation(s)
- Ayfer Yildirim
- Vocational School of Health Services, Mardin Artuklu University, Mardin, Turkey
| | - Hilal Acay
- Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|
2
|
Tian H, Yang P, Li G, Ma F, Li J, Li Y, Cui W, Zhang Z. Preparation of ultra-light, highly compressible, and biodegradable chitosan porous materials for heavy metal adsorption, dye adsorption and oil-water separation. Carbohydr Polym 2024; 346:122662. [PMID: 39245516 DOI: 10.1016/j.carbpol.2024.122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/10/2024] [Accepted: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Chitosan materials are much important in adsorption, separation and water treatment due to their hydrophilicity, biodegradability and easy functionalization. However, they were difficult to form structural materials, which limited its application in engineering. In this paper, a new type of chitosan porous materials was prepared with two-step strategy involving the freezing crosslinking of chitosan with glutaraldehyde to form cryogels, and their subsequent reduction with NaBH4 to transform CN bonds into CN bonds, resulting in remarkable improvement of mechanical property. That is, the strength remained almost unchanged after 80 % deformation. The abundant -NH2 and -OH on the surface of materials, as well as the unique pore structure from cryogels, gave relatively high adsorption capacity for metals and dyes (88.73 ± 4.25 mg·g-1 for Cu(II) and 3261.05 ± 36.10 mg·g-1 for Congo red). The surface hydrophilicity of materials made it possible for selective water permeation with over 95 % separation efficiency for oil-water mixtures. In addition, simple hydrophobic modification using bromotetradecane achieved selective oil permeation with over 96 % separation efficiency for oil-water mixtures. This study not only provides a new strategy to endow chitosan materials with excellent mechanical property, large adsorption capacity and good oil-water separation performance, but also offers environmentally friendly materials for sewage treatment applications.
Collapse
Affiliation(s)
- Haoran Tian
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Pengfei Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Guangbi Li
- School of Chemical Engineering & Materials Science, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Feng Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Junying Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yingzhou Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Wenyue Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhiliang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
3
|
Majeed F, Razzaq A, Rehmat S, Azhar I, Mohyuddin A, Rizvi NB. Enhanced dye sequestration with natural polysaccharides-based hydrogels: A review. Carbohydr Polym 2024; 330:121820. [PMID: 38368085 DOI: 10.1016/j.carbpol.2024.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Due to the expansion of industrial activities, the concentration of dyes in water has been increasing. The dire need to remove these pollutants from water has been heavily discussed. This study focuses on the reproducible and sustainable solution for wastewater treatment and dye annihilation challenges. Adsorption has been rated the most practical way of the several decolorization procedures due to its minimal initial investment, convenient utility, and high-performance caliber. Hydrogels, which are three-dimensional polymer networks, are notable because of their potential to regenerate, biodegrade, absorb bulky amounts of water, respond to stimuli, and have unique morphologies. Natural polysaccharide hydrogels are chosen over synthetic ones because they are robust, bioresorbable, non-toxic, and cheaply accessible. This study has covered six biopolymers, including chitosan, cellulose, pectin, sodium alginate, guar gum, and starch, consisting of their chemical architecture, origins, characteristics, and uses. The next part describes these polysaccharide-based hydrogels, including their manufacturing techniques, chemical alterations, and adsorption effectiveness. It is deeply evaluated how size and shape affect the adsorption rate, which has not been addressed in any prior research. To assist the readers in identifying areas for further research in this subject, limitations of these hydrogels and future views are provided in the conclusion.
Collapse
Affiliation(s)
- Fiza Majeed
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Ammarah Razzaq
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Shabnam Rehmat
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan; School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Irfan Azhar
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, Multan 60000, Pakistan
| | | |
Collapse
|
4
|
Zhang L, Li Q, Bai X, Li X, Zhang G, Zou J, Fei P, Lai W. Double network self-healing hydrogels based on carboxyethyl chitosan/oxidized sodium alginate/Ca 2+: Preparation, characterization and application in dye absorption. Int J Biol Macromol 2024; 264:130564. [PMID: 38431021 DOI: 10.1016/j.ijbiomac.2024.130564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
This paper presents the formation of a self-healing hydrogel prepared by carboxyethyl modification of chitosan and crosslinking with oxidized sodium alginate. Concurrently, the incorporation of Ca2+ facilitated the formation of "calcium bridges" through intricate coordination with carboxyl moieties, bolstering the attributes of the hydrogel. Various characterization methods, including scanning electron microscopy, texture analysis, and rheological measurements, demonstrated that the introduction of carboxyethyl groups resulted in a more compact hydrogel network structure and improved the hardness and elasticity. The addition of Ca2+ helped to further enhance the mechanical performance of the hydrogel and increase its thermal stability. Then, the adsorption capacity was also investigated, showing adsorption capacities of 46.17 mg/g methylene blue and 46.44 mg/g congo red for carboxyethyl chitosan/oxidized sodium alginate hydrogel, a four-fold increase for congo red versus chitosan/oxidized sodium alginate hydrogel. In addition, the adsorption behavior of CEC/OSA/2%Ca2+ hydrogel can be well described by pseudo-second-order kinetic model and Langmuir adsorption isothermal model. Compared to traditional hydrogels, CEC/OSA/2%Ca2+ hydrogel shows superior mechanical strength, enhanced thermal stability, and improved adsorption capacity, which can effectively adsorb not only methylene blue but also congo red. These advancements demonstrate our hydrogel's innovative properties.
Collapse
Affiliation(s)
- Linyu Zhang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China; Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qianqi Li
- Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Xinru Bai
- Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Xiaoqin Li
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China
| | - Guoguang Zhang
- Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Jinmei Zou
- Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Peng Fei
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China; Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| | - Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, PR China; Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, PR China.
| |
Collapse
|