1
|
Liu C, Li D, Ma S, Zhang H, Zhang S, Chang F, Liu P, Zhao H, Jin S. Modified chevron osteotomy for the treatment of hallux valgus with unison bioabsorbable screws: Biomechanical research and clinical applications. J Biomech 2025; 180:112527. [PMID: 39832465 DOI: 10.1016/j.jbiomech.2025.112527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Researchers have modified PLA materials to enhance their mechanical properties and meet the clinical requirements. However, the strength and stiffness of PLA are still significantly lower than those of metals. Building on the established chevron clinical procedure and considering the mechanical characteristics of PLA screws, we devised a modified chevron osteotomy (MCO) based on a load-reducing structure with the aim of reducing the load on the screws. Subsequently, in vitro quasi-static in situ compression and dynamic fatigue tests were conducted for both procedures. DIC, micro-CT, and SEM were used to elucidate the unloading effects and structural damage of different bone cutting and implant locations on the PLA bone screws, providing biomechanical data for clinical applications. In-vitro simulation studies indicated that the unloading structure of the MCO procedure reduced the load borne by the PLA screws. Within the load range of the first metatarsal during walking, the MCO procedure exhibited a compressive strength 2.5 times that of the traditional chevron osteotomy groups and even exceeded the titanium alloy screw groups by 25%, ensuring PLA screw fixation strength and stability that are not inferior to metallic materials. A stable load-reducing structure in osteotomy procedures is the key to PLA materials becoming viable alternatives to metal orthopedic fixation devices.
Collapse
Affiliation(s)
- Changyi Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025 PR China; Weihai Institute for Bionics-Jilin University, Weihai 264207 PR China
| | - Dongqi Li
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025 PR China
| | - Songning Ma
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025 PR China
| | - Hanyang Zhang
- Orthopedics Department, Second Hospital of Jilin University, Changchun 130025 PR China.
| | - Shizhong Zhang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025 PR China
| | - Fei Chang
- Orthopedics Department, Second Hospital of Jilin University, Changchun 130025 PR China
| | - Peng Liu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025 PR China
| | - Hongwei Zhao
- Orthopedics Department, Second Hospital of Jilin University, Changchun 130025 PR China
| | - Shuo Jin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025 PR China
| |
Collapse
|
2
|
Salehi S, Ghomi H, Hassanzadeh-Tabrizi SA, Koupaei N, Khodaei M. Antibacterial and osteogenic properties of chitosan-polyethylene glycol nanofibre-coated 3D printed scaffold with vancomycin and insulin-like growth factor-1 release for bone repair. Int J Biol Macromol 2025; 298:139883. [PMID: 39818389 DOI: 10.1016/j.ijbiomac.2025.139883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing. To modify the surface properties and facilitate the loading and release of therapeutics, the scaffold was coated with chitosan-polyethylene glycol (CS-PEG) nanofibers incorporating vancomycin (V) and insulin-like growth factor-1 (IGF1). The characterization was conducted using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results demonstrated that the release of V (93.43 %) and IGF1 (95.86 %) from the fabricated scaffolds persisted for 28 days in a phosphate-buffered saline (PBS) solution. The release of V resulted in antibacterial activity against Staphylococcus aureus (S. aureus), forming an inhibition zone of 21.16 mm. Additionally, it was demonstrated that the release of IGF1 could counteract the adverse effect of V release on cell behavior, and enhance the adhesion and proliferation of MG63 cells. Preclinical in vivo studies conducted on a rat calvarial defect model validated that the bone repair was fully completed in the group treated with the fabricated scaffold within 8 weeks. Consequently, the scaffold designed in this study can serve as a versatile scaffold for achieving perfect repair of craniofacial defects.
Collapse
Affiliation(s)
- Saiedeh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hamed Ghomi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Narjes Koupaei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| |
Collapse
|
3
|
Talib Al-Sudani B, Al-Musawi MH, Kamil MM, Turki SH, Nasiri-Harchegani S, Najafinezhad A, Noory P, Talebi S, Valizadeh H, Sharifianjazi F, Bazli L, Tavakoli M, Mehrjoo M, Firuzeh M, Mirhaj M. Vasculo-osteogenic keratin-based nanofibers containing merwinite nanoparticles and sildenafil for bone tissue regeneration. Int J Pharm 2024; 667:124875. [PMID: 39471889 DOI: 10.1016/j.ijpharm.2024.124875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Vascularization of bone tissue constructs plays a pivotal role in facilitating nutrient transport and metabolic waste removal during the processes of osteogenesis and bone regeneration in vivo. In this study, a sildenafil (Sil)-loaded nanofibrous scaffold of keratin/Soluplus/merwinite (KS.Me.Sil) was fabricated through electrospinning and the effectiveness of the scaffold was assessed for bone tissue engineering applications. The KS.Me.Sil nanofibrous scaffold exhibited notably enhanced ultimate tensile strength (3.38 vs 2.61 MPa) and elastic modulus (69.83 vs 46.27 MPa) compared to the KS scaffold. The in vitro release of Ca2+, Si4+ and Mg2+ ions and the release of Sil from the nanofibers as well as biodegradability and bioactivity were evaluated for 14 days. Protein adsorption capability and cytocompatibility of the scaffolds were tested. Alkaline phosphatase activity test, Alizarin red staining and qRT-PCR analysis demonstrated that the KS.Me.Sil nanofibers had the best osteogenic activity among other samples. Also, the results of the chorioallantoic membrane assay showed an almost threefold increase in blood vessel density in the group treated with the KS.Me.Sil nanofibers extract compared to the KS. In conclusion, our findings suggest that the electrospun KS.Me.Sil nanofibrous scaffold offers a robust structure with exceptional osteogenic and angiogenic characteristics, making it a promising candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Basma Talib Al-Sudani
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Marwa M Kamil
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Sumyah H Turki
- Department of Plant Biotechnology College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Sepideh Nasiri-Harchegani
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Aliakbar Najafinezhad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Parastoo Noory
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Talebi
- Department of Orthopaedics, Isfahan University of Medical Science, Isfahan, Iran
| | - Hamideh Valizadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia
| | - Leila Bazli
- School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mahboubeh Firuzeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
4
|
Sánchez-Cepeda A, Pazos MC, Leonardo PA, Ingrid SC, Correa-Araujo LS, María de Lourdes CG, Vera-Graziano R. Functionalization of 3D printed poly(lactic acid)/graphene oxide/β-tricalcium phosphate (PLA/GO/TCP) scaffolds for bone tissue regeneration application. RSC Adv 2024; 14:39804-39819. [PMID: 39697249 PMCID: PMC11651288 DOI: 10.1039/d4ra05889e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
The challenge of bone tissue regeneration implies the use of new advanced technologies for the manufacture of polymeric matrices, with 3D printing technology being a suitable option for tissue engineering due to its low processing cost, its simple operation and the wide use of biomaterials in biomedicine. Among the biopolymers used to obtain porous scaffolds, poly(lactic acid) (PLA) stands out due its mechanical and biodegradability properties, although its low bioactivity to promote bone regeneration is a great challenge. In this research, a 3D scaffold based on PLA reinforced with bioceramics such as graphene oxide (GO) and β-tricalcium phosphate (TCP) was designed and characterized by FTIR, XRD, DSC, SEM and mechanical tests. The in vitro biocompatibility, viability, and cell proliferation of the poly-l-lysine (POLYL) functionalized scaffold were investigated using Wharton Jelly mesenchymal stem cells (hWJ-MSCs) and confirmed by XPS. The incorporation of GO/TCP bioceramics into the PLA polymer matrix increased the mechanical strength and provided a thermal barrier during the fusion treatments that the polymeric material undergoes during its manufacturing. The results show that the functionalization of the scaffold with POLYL allows improving the cell adhesion, proliferation and differentiation of hWJ-MSCs. The resulting scaffold PLA/GO/TCP/POLYL exhibits enhanced structural integrity and osteogenic cues, rendering it a promising candidate for biomedical applications.
Collapse
Affiliation(s)
- Angela Sánchez-Cepeda
- Facultad de Ciencias Básicas, Escuela de Posgrados, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa 150001 Tunja Boyacá Colombia
| | - M Carolina Pazos
- Facultad de Ciencias Básicas, Escuela de Posgrados, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa 150001 Tunja Boyacá Colombia
- Escuela de Ciencias Químicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia UPTC Avda. Central del Norte, Vía Paipa Tunja Boyacá Colombia
| | - Prieto-Abello Leonardo
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en salud (IDCBIS) Cra 32 #12-81 0571 Bogotá Colombia
| | - Silva-Cote Ingrid
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en salud (IDCBIS) Cra 32 #12-81 0571 Bogotá Colombia
| | - Luz Stella Correa-Araujo
- Unidad de Ingeniería Tisular, Instituto Distrital de Ciencia, Biotecnología e Innovación en salud (IDCBIS) Cra 32 #12-81 0571 Bogotá Colombia
| | - Chávez García María de Lourdes
- Facultad de Química, Laboratorio de Materiales Cerámicos, Universidad Nacional Autónoma de México UNAM Avda. Universidad 3000, C.U. Coyoacán Ciudad de México 04510 Mexico
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México UNAM Av. Universidad, C.U. Coyoacán 04510 Ciudad de México Mexico
| |
Collapse
|
5
|
Salehi S, Ghomi H, Hassanzadeh-Tabrizi SA, Koupaei N, Khodaei M. 3D printed polylactic acid/polyethylene glycol/bredigite nanocomposite scaffold enhances bone tissue regeneration via promoting osteogenesis and angiogenesis. Int J Biol Macromol 2024; 281:136160. [PMID: 39357695 DOI: 10.1016/j.ijbiomac.2024.136160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Recently, the fabrication of personalized scaffolds with high accuracy has been developed through 3D printing technology. In the current study, polylactic acid/polyethylene glycol (PLA/PEG) composite scaffolds with varied weight percentages (0, 5, 10, 20 and 30 %) of bredigite nanoparticles (B) were fabricated using the 3D printing and then characterized through scanning electron microscopy and Fourier transform infra-red spectroscopy. The addition of B nanoparticles up to 20 wt% to PLA/PEG scaffold increased the compressive strength (from 7.59 to 13.84 MPa) and elastic modulus (from 142.42 to 268.33 MPa). The apatite formation ability as well as inorganic ion release in simulated body fluid were investigated for 28 days. The MG-63 cells viability and adhesion were enhanced by increasing the amount of B in the PLA/PEG scaffold and the osteogenic differentiation of the rat bone marrow mesenchymal stem cells was confirmed by alkaline phosphatase activity test and alizarin red staining. According to chorioallantoic membrane assay, the highest angiogenesis occurred around the PLA/PEG/B30 scaffold. In vivo experiments on a rat calvarial defect model demonstrated an almost complete recovery in the PLA/PEG/B30 group within 8 weeks. Based on the results, the PLA/PEG/B30 composite scaffold is proposed as an optimal scaffold to repair bone defects.
Collapse
Affiliation(s)
- Saiedeh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hamed Ghomi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Narjes Koupaei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| |
Collapse
|
6
|
Almajidi YQ, Muslim RK, Issa AA, Al-Musawi MH, Shahriari-Khalaji M, Mirhaj M. Three-dimensional printed polyelectrolyte construct containing mupirocin-loaded quaternized chitosan nanoparticles for skin repair. Int J Biol Macromol 2024; 280:136214. [PMID: 39362446 DOI: 10.1016/j.ijbiomac.2024.136214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Despite substantial advancements in wound dressing development, effective skin repair remains a significant challenge, largely due to the persistent issue of recurrent infections. Three-dimensional printed constructs that integrate bioactive and antibacterial agents hold significant potential to address this challenge. In this study, a 3D-printed hydrogel scaffold composed of polyallylamine hydrochloride (PAH) and pectin (Pc), incorporated with mupirocin (Mp)-loaded quaternized chitosan nanoparticles (QC NPs) was fabricated. The primary objective of this study was to facilitate a controlled and sustained release of Mp via the QC NPs. The average size of QC-Mp nanoparticles was measured to be 66.05 nm and the average strand diameter and pore size of the 3D-printed construct were measured as 147.22 ± 5.83 and 388.44 ± 14.50 μm, respectively. The hemolysis rate of all scaffolds was below 2 %, indicating that they can be classified as non-hemolytic materials with sufficient blood compatibility. The PAH-Pc/QC-Mp scaffold exhibited significant antibacterial activity, enhanced cell viability in HaCat cells, sustained Mp release until day 7 (⁓60 %), and in-vivo wound healing promotion by stimulation of human keratinocytes. In conclusion, the proposed biocompatible construct demonstrates significant potential for the treatment of chronic and infected wounds by preventing infection and promoting accelerated wound healing.
Collapse
Affiliation(s)
- Yasir Qasim Almajidi
- Department of Pharmaceutics, College of Pharmacy, Al-Nahrain university, Baghdad, Iraq
| | - Rana Kadum Muslim
- Department of Pharmacy, Baghdad College of Medical Sciences, Baghdad, Iraq.
| | - Anmar A Issa
- College of pharmacy, Al-Esraa University, Baghdad, Iraq.
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq.
| | | | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
7
|
Wang Z, Zheng B, Yu X, Shi Y, Zhou X, Gao B, He F, Tam MS, Wang H, Cheang LH, Zheng X, Wu T. Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold. Int J Biol Macromol 2024; 277:134185. [PMID: 39074694 DOI: 10.1016/j.ijbiomac.2024.134185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Critical-size bone defect repair presents multiple challenges, such as osteogenesis, vascularization, and neurogenesis. Current biomaterials for bone repair need more consideration for the above functions. Organic-inorganic composites combined with bioactive ions offer significant advantages in bone regeneration. In our work, we prepared an organic-inorganic composite material by blending polylactic acid (PLA) with 3-aminopropyltriethoxysilane (APTES)-modified magnesium silicate (A-M2S) and fabricated it by 3D printing. With the increase of A-M2S proportion, the hydrophilicity and mineralization ability showed an enhanced trend, and the compressive strength and elastic modulus were increased from 15.29 MPa and 94.61 MPa to 44.30 MPa and 435.77 MPa, respectively. Furthermore, A-M2S/PLA scaffolds not only exhibited good cytocompatibility of bone marrow mesenchymal stem cells (BMSCs), human umbilical vein endothelial cells (HUVECs), and Schwann cells (SCs), but also effectively promoted osteogenesis, angiogenesis, and neurogenesis in vitro. After implanting 10% A-M2S/PLA scaffolds in vivo, the scaffolds showed the most effective repair of cranium defects compared to the blank and control group (PLA). Additionally, they promoted the secretion of proteins related to bone regeneration and neurovascular formation. These results provided the basis for expanding the application of A-M2S and PLA in bone tissue engineering and presented a novel concept for neurovascularized bone repair.
Collapse
Affiliation(s)
- Zhaozhen Wang
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China; Orthopedic and traumatology department, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyuan Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xiaolu Yu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yiwan Shi
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xinting Zhou
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Botao Gao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | | | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Lek Hang Cheang
- Department of Orthopedic Surgery, Centro Hospitalar Conde de Sao Januario, Macau.
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Tavakoli M, Najafinezhad A, Mirhaj M, Karbasi S, Varshosaz J, Al-Musawi MH, Madaninasab P, Sharifianjazi F, Mehrjoo M, Salehi S, Kazemi N, Nasiri-Harchegani S. Graphene oxide-encapsulated baghdadite nanocomposite improved physical, mechanical, and biological properties of a vancomycin-loaded PMMA bone cement. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:823-850. [PMID: 38300323 DOI: 10.1080/09205063.2024.2308328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Polymethyl methacrylate (PMMA) bone cement is commonly used in orthopedic surgeries to fill the bone defects or fix the prostheses. These cements are usually containing amounts of a nonbioactive radiopacifying agent such as barium sulfate and zirconium dioxide, which does not have a good interface compatibility with PMMA, and the clumps formed from these materials can scratch metal counterfaces. In this work, graphene oxide encapsulated baghdadite (GOBgh) nanoparticles were applied as radiopacifying and bioactive agent in a PMMA bone cement containing 2 wt.% of vancomycin (VAN). The addition of 20 wt.% of GOBgh (GOBgh20) nanoparticles to PMMA powder caused a 33.6% increase in compressive strength and a 70.9% increase in elastic modulus compared to the Simplex® P bone cement, and also enhanced the setting properties, radiopacity, antibacterial activity, and the apatite formation in simulated body fluid. In vitro cell assessments confirmed the increase in adhesion and proliferation of MG-63 cells as well as the osteogenic differentiation of human adipose-derived mesenchymal stem cells on the surface of PMMA-GOBgh20 cement. The chorioallantoic membrane assay revealed the excellent angiogenesis activity of nanocomposite cement samples. In vivo experiments on a rat model also demonstrated the mineralization and bone integration of PMMA-GOBgh20 cement within four weeks. Based on the promising results obtained, PMMA-GOBgh20 bone cement is suggested as an optimal sample for use in orthopedic surgeries.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Aliakbar Najafinezhad
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Pegah Madaninasab
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of GA, Tbilisi, Georgia
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Iran National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Saeideh Salehi
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Nafise Kazemi
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Sepideh Nasiri-Harchegani
- Department of Materials Engineering, Advanced Materials Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
9
|
Ahmed YM, Eldin MA, Galal A, Atta NF. Electrochemical sensor based on PEDOT/CNTs-graphene oxide for simultaneous determination of hazardous hydroquinone, catechol, and nitrite in real water samples. Sci Rep 2024; 14:5654. [PMID: 38454022 PMCID: PMC10920748 DOI: 10.1038/s41598-024-54683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
Hydroquinone (HQ), catechol (CC) and nitrite (NT) are considered aquatic environmental pollutants. They are highly toxic, harm humans' health, and damage the environment. Thus, in the present work we introduce a simple and efficient electrochemical sensor for determination of HQ, CC, and NT simultaneously in wastewater sample. The sensor is fabricated by modifying the surface of a glassy carbon electrode (GCE) by two successive thin films from poly(3,4-ethylenedioxythiophene) (PEDOT) and a mixture of carbon nanotubes-graphene oxide (CNT-GRO). Under optimized conditions the HQ, CC, and NT are successfully detected simultaneously in wastewater sample with changing their concentrations in the ranges (0.04 → 100 µM), (0.01 → 100 µM) and (0.05 → 120 µM), the detection limits are 8.5 nM, 3.8 nM and 6.1 nM, respectively. Good potential peak separations: 117 mV and 585 mV are obtained between the HQ-CC, and CC-NT. The sensor has an excellent catalytic capability toward the oxidation of HQ, CC, and NT due to good synergism between its composite components: PEDOT, GRO and CNTs. The features of the sensor are large active surface area, good electrical conductivity, perfect storage stability, good reproducibility, anti-interference capability and accepted recovery rate for HQ, CC, and NT determination in wastewater sample.
Collapse
Affiliation(s)
- Yousef M Ahmed
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mahmoud A Eldin
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed Galal
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nada F Atta
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
10
|
Tavakoli M, Salehi H, Emadi R, Varshosaz J, Labbaf S, Seifalian AM, Sharifianjazi F, Mirhaj M. 3D printed polylactic acid-based nanocomposite scaffold stuffed with microporous simvastatin-loaded polyelectrolyte for craniofacial reconstruction. Int J Biol Macromol 2024; 258:128917. [PMID: 38134992 DOI: 10.1016/j.ijbiomac.2023.128917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Critical sized craniofacial defects are among the most challenging bone defects to repair, due to the anatomical complexity and aesthetic importance. In this study, a polylactic acid/hardystonite-graphene oxide (PLA/HTGO) scaffold was fabricated through 3D printing. In order to upgrade the 3D printed scaffold to a highly porous scaffold, its channels were filled with pectin-quaternized chitosan (Pec-QCs) polyelectrolyte solution containing 0 or 20 mg/mL of simvastatin (Sim) and then freeze-dried. These scaffolds were named FD and FD-Sim, respectively. Also, similar PLA/HTGO scaffolds were prepared and dip coated with Pec-QCs solution containing 0 or 20 mg/mL of Sim and were named DC and DC-Sim, respectively. The formation of macro/microporous structure was confirmed by morphological investigations. The release of Sim from DC-Sim and FD-Sim scaffolds after 28 days was measured as 77.40 ± 5.25 and 86.02 ± 3.63 %, respectively. Cytocompatibility assessments showed that MG-63 cells had the highest proliferation, attachment and spread on the Sim containing scaffolds, especially FD-Sim. In vivo studies on a rat calvarial defect model revealed that an almost complete recovery occurred in the group treated with FD-Sim scaffold after 8 weeks and the defect was filled with newly formed bone. The results of this study acknowledge that the FD-Sim scaffold can be a perfect candidate for calvarial defect repair.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, Nanoloom Ltd, Liberum Health Ltd), London BioScience Innovation Centre, London, United Kingdom
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi, Georgia.
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
11
|
da Silva TS, Horvath-Pereira BDO, da Silva-Júnior LN, Tenório Fireman JVB, Mattar M, Félix M, Buchaim RL, Carreira ACO, Miglino MA, Soares MM. Three-Dimensional Printing of Graphene Oxide/Poly-L-Lactic Acid Scaffolds Using Fischer-Koch Modeling. Polymers (Basel) 2023; 15:4213. [PMID: 37959893 PMCID: PMC10648465 DOI: 10.3390/polym15214213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Accurately printing customizable scaffolds is a challenging task because of the complexity of bone tissue composition, organization, and mechanical behavior. Graphene oxide (GO) and poly-L-lactic acid (PLLA) have drawn attention in the field of bone regeneration. However, as far as we know, the Fischer-Koch model of the GO/PLLA association for three-dimensional (3D) printing was not previously reported. This study characterizes the properties of GO/PLLA-printed scaffolds in order to achieve reproducibility of the trabecula, from virtual planning to the printed piece, as well as its response to a cell viability assay. Fourier-transform infrared and Raman spectroscopy were performed to evaluate the physicochemical properties of the nanocomposites. Cellular adhesion, proliferation, and growth on the nanocomposites were evaluated using scanning electron microscopy. Cell viability tests revealed no significant differences among different trabeculae and cell types, indicating that these nanocomposites were not cytotoxic. The Fischer Koch modeling yielded satisfactory results and can thus be used in studies directed at diverse medical applications, including bone tissue engineering and implants.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
| | - Bianca de Oliveira Horvath-Pereira
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
| | - Leandro Norberto da Silva-Júnior
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
| | - João Víctor Barbosa Tenório Fireman
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
| | - Michel Mattar
- Instituto de Reabilitação Oro Facial Osteogenesis S/S LTDA, Vila Olimpia 04532-060, SP, Brazil;
| | - Marcílio Félix
- Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil;
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil;
| | - Ana Claudia Oliveira Carreira
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
- Center for Natural and Human Sciences, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Maria Angelica Miglino
- Departament of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.d.S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (J.V.B.T.F.); (A.C.O.C.); (M.A.M.)
- Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil;
| | - Marcelo Melo Soares
- Instituto de Reabilitação Oro Facial Osteogenesis S/S LTDA, Vila Olimpia 04532-060, SP, Brazil;
| |
Collapse
|