1
|
Yakoubi S. Enhancing plant-based cheese formulation through molecular docking and dynamic simulation of tocopherol and retinol complexes with zein, soy and almond proteins via SVM-machine learning integration. Food Chem 2024; 452:139520. [PMID: 38723573 DOI: 10.1016/j.foodchem.2024.139520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
The current study addresses the growing demand for sustainable plant-based cheese alternatives by employing molecular docking and deep learning algorithms to optimize protein-ligand interactions. Focusing on key proteins (zein, soy, and almond protein) along with tocopherol and retinol, the goal was to improve texture, nutritional value, and flavor characteristics via dynamic simulations. The findings demonstrated that the docking analysis presented high accuracy in predicting conformational changes. Flexible docking algorithms provided insights into dynamic interactions, while analysis of energetics revealed variations in binding strengths. Tocopherol exhibited stronger affinity (-5.8Kcal/mol) to zein compared to retinol (-4.1Kcal/mol). Molecular dynamics simulations offered comprehensive insights into stability and behavior over time. The integration of machine learning algorithms improved the classification and the prediction accuracy, achieving a rate of 71.59%. This study underscores the significance of molecular understanding in driving innovation in the plant-based cheese industry, facilitating the development of sustainable alternatives to traditional dairy products.
Collapse
Affiliation(s)
- Sana Yakoubi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan; Alliance for Research on the Mediterranean North Africa (ARENA), University of Tsukuba, Ibaraki, Japan; University of Tunis El Manar, 1068 Tunis, Tunisia.
| |
Collapse
|
2
|
González-Paz L, Lossada C, Hurtado-León ML, Vera-Villalobos J, Paz JL, Marrero-Ponce Y, Martinez-Rios F, Alvarado Y. Biophysical Analysis of Potential Inhibitors of SARS-CoV-2 Cell Recognition and Their Effect on Viral Dynamics in Different Cell Types: A Computational Prediction from In Vitro Experimental Data. ACS OMEGA 2024; 9:8923-8939. [PMID: 38434903 PMCID: PMC10905729 DOI: 10.1021/acsomega.3c06968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Recent reports have suggested that the susceptibility of cells to SARS-CoV-2 infection can be influenced by various proteins that potentially act as receptors for the virus. To investigate this further, we conducted simulations of viral dynamics using different cellular systems (Vero E6, HeLa, HEK293, and CaLu3) in the presence and absence of drugs (anthelmintic, ARBs, anticoagulant, serine protease inhibitor, antimalarials, and NSAID) that have been shown to impact cellular recognition by the spike protein based on experimental data. Our simulations revealed that the susceptibility of the simulated cell systems to SARS-CoV-2 infection was similar across all tested systems. Notably, CaLu3 cells exhibited the highest susceptibility to SARS-CoV-2 infection, potentially due to the presence of receptors other than ACE2, which may account for a significant portion of the observed susceptibility. Throughout the study, all tested compounds showed thermodynamically favorable and stable binding to the spike protein. Among the tested compounds, the anticoagulant nafamostat demonstrated the most favorable characteristics in terms of thermodynamics, kinetics, theoretical antiviral activity, and potential safety (toxicity) in relation to SARS-CoV-2 spike protein-mediated infections in the tested cell lines. This study provides mathematical and bioinformatic models that can aid in the identification of optimal cell lines for compound evaluation and detection, particularly in studies focused on repurposed drugs and their mechanisms of action. It is important to note that these observations should be experimentally validated, and this research is expected to inspire future quantitative experiments.
Collapse
Affiliation(s)
- Lenin González-Paz
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB),Instituto Venezolano de Investigaciones
Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana de Venezuela
| | - Carla Lossada
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Biocomputación
(LB),Instituto Venezolano de Investigaciones
Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana de Venezuela
| | - María Laura Hurtado-León
- Facultad
Experimental de Ciencias (FEC). Departamento de Biología. Laboratorio
de Genética y Biología Molecular (LGBM),Universidad del Zulia (LUZ),Maracaibo 4001, República Bolivariana de Venezuela
| | - Joan Vera-Villalobos
- Facultad
de Ciencias Naturales y Matemáticas, Departamento de Química
y Ciencias Ambientales, Laboratorio de Análisis Químico
Instrumental (LAQUINS), Escuela Superior
Politécnica del Litoral, Guayaquil EC090112, Ecuador
| | - José L. Paz
- Departamento
Académico de Química Inorgánica, Facultad de
Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Cercado de Lima, Lima 15081, Perú
| | - Yovani Marrero-Ponce
- Grupo
de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias
de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades
Médicas; e Instituto de Simulación Computacional (ISC-USFQ),
Diego de Robles y vía Interoceánica, Universidad San Francisco de Quito (USFQ), Quito, Pichincha 170157, Ecuador
| | - Felix Martinez-Rios
- Universidad
Panamericana. Facultad de Ingeniería. Augusto Rodin 498, Ciudad de México 03920, México
| | - Ysaías.
J. Alvarado
- Centro
de Biomedicina Molecular (CBM). Laboratorio de Química Biofísica
Teórica y Experimental (LQBTE),Instituto
Venezolano de Investigaciones Científicas (IVIC),Maracaibo, Zulia 4001, República Bolivariana
de Venezuela
| |
Collapse
|