1
|
Li Y, Qiu Y, Wei L, Song Y, Guo W, Yu L, Gao G, Gao J, Huang J, Wang Y, Shi Y, Liu LZ, Zhang Q, Song L. Enhancing the compatibility and performance of poly (lactic acid) and thermoplastic polyolefin elastomer blends through a dual compatibilization strategy. Int J Biol Macromol 2025; 303:140513. [PMID: 39892536 DOI: 10.1016/j.ijbiomac.2025.140513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Application of biodegradable polylactic acid (PLA) is limited by its poor toughness. This research focuses on modifying PLA using thermoplastic elastomers (TPO), primarily due to their dual advantages of enhancing performance and reducing application costs. Two thermoplastic polyolefin elastomers (TPO) (NS06, Versify2300) were blended to prepare a superior elastomer TPO(NV) (NS06:Versify2300 = 80:20). This improved TPO(NV) was then used as a toughening agent to enhance the toughness of polylactic acid (PLA). To enhance the compatibility between PLA and TPO(NV), TPO(NV)-g-(GMA-co-St) graft copolymer and dibutyl itaconate (DBI) were introduced into the PLA/TPO(NV) blend system. The effects of different compatibilizers on the compatibility, crystallization behavior, rheological properties, mechanical properties, and microstructure of the PLA/TPO(NV) blends were systematically studied. The results indicated that glycidyl methacrylate (GMA) and styrene (St) were successfully grafted onto the TPO(NV) molecular chains. The epoxy groups in GMA within the graft copolymer could react with the end groups of the PLA resin, while the double bonds in DBI could react with the main chains of either PLA or TPO(NV) elastomer. This effectively connected the PLA and TPO(NV) molecular chains, collectively enhancing the compatibility between TPO(NV) elastomer and PLA. The non-isothermal crystallization ability of TPO(NV) decreased after blending with PLA, and this effect was further amplified with the introduction of the TPO(NV)-g-(GMA-co-St) graft copolymer or DBI. However, the plasticizing effect of DBI increased the mobility of the polymer molecular chains, thereby enhancing the crystallization ability. Therefore, when DBI was used alone to enhance the compatibility of PLA/TPO(NV) blends, the crystallinity of the blend did not change significantly. In contrast, when the TPO(NV)-g-(GMA-co-St) graft copolymer was used alone or in combination with DBI, the crystallinity of the blend decreased significantly. Mechanical property tests indicated that the addition of either the TPO(NV)-g-(GMA-co-St) graft copolymer or DBI improved the compatibility of PLA/TPO(NV) blends, thereby enhancing their mechanical properties. However, the combined addition of both the TPO(NV)-g-(GMA-co-St) graft copolymer and DBI resulted in a more pronounced effect. The notched impact strength and elongation at break reached optimal values, which were 1.9 times and 10.4 times those of the PLA/TPO(NV) blend, respectively. At this point, the fracture surface of the blend exhibited significant plastic flow, indicating characteristics of ductile fracture.
Collapse
Affiliation(s)
- Yongchao Li
- College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China; Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ying Qiu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Lan Wei
- Changchun Ecological Environment Monitoring Center in Jilin Province, Changchun 130012, China
| | - Yu Song
- Changchun Lianyu Chemical Technology Co., LTD, Changchun 130000, China
| | - Wanyuan Guo
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110300, China
| | - Lingxiao Yu
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Guangxu Gao
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jialu Gao
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Jiangting Huang
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yuanxia Wang
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ying Shi
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Li-Zhi Liu
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Qi Zhang
- College of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China; School of Science, Shenyang University of Technology, Shenyang 110870, China.
| | - Lixin Song
- Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.
| |
Collapse
|
2
|
Li W, Shi X, Zhang D, Hu J, Zhao S, Ye S, Wang J, Liu X, Zhang Q, Wang Z, Zhang Y, Yan L. Adipose derived mesenchymal stem cell-seeded regenerated silk fibroin scaffolds reverse liver fibrosis in mice. J Mater Chem B 2025; 13:4201-4213. [PMID: 40059659 DOI: 10.1039/d5tb00275c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Liver fibrosis (LF) is an important process in the progression of chronic liver disease to cirrhosis. We have previously demonstrated that a regenerated silk fibroin scaffold loaded with adipose-derived stem cells (RSF + ADSCs) can repair acute liver injury. In this study, we established a chronic LF animal model using carbon tetrachloride (CCl4) and a high-fat diet. We then investigated the liver repair capacity after transplanting RSF + ADSC scaffolds and RSF scaffolds onto the liver surface of mice. Compared with the control group, the concentrations of ALT and AST in the serum were significantly reduced in the RSF and RSF + ADSC groups. HE staining and Masson trichrome staining revealed a decrease in the SAF score in both the RSF and RSF + ADSC groups. Meanwhile, the biomarkers of blood vessels and bile ducts, such as CD34, ERG, muc1, and CK19, were significantly elevated in the RSF + ADSC group. Finally, transcriptome analysis showed that the PPAR signaling pathway, which inhibits liver fibrosis, was significantly upregulated in both the RSF and RSF + ADSC groups. Our study suggests that, compared with RSF scaffolds alone, RSF + ADSCs have a significant repair effect on chronic LF in mice.
Collapse
Affiliation(s)
- Weilong Li
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Xiaonan Shi
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Daxu Zhang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Jingjing Hu
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Shuo Zhao
- Department of Critical Care Medicine,Aerospace Central Hospital,Beijing,, PR China
| | - Shujun Ye
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Jingyi Wang
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| | - Xiaojiao Liu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, PR China.
| | - Qian Zhang
- School of nursing, Lanzhou University, Gansu 730000, PR China
| | - Zhanbo Wang
- Department of Pathology, Chinese PLA General Hospital, Beijing 100853, P. R. China.
| | - Yaopeng Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, PR China.
| | - Li Yan
- The Second Medical Center and National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, PR China.
| |
Collapse
|
3
|
Wang H, Tian Z, Wang L, Wang H, Zhang Y, Shi Z. Advancements, functionalization techniques, and multifunctional applications in biomedical and industrial fields of electrospun pectin nanofibers: A review. Int J Biol Macromol 2025; 307:141964. [PMID: 40074113 DOI: 10.1016/j.ijbiomac.2025.141964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Electrospun pectin nanofibers have emerged as a transformative advancement in biomaterials, offering remarkable potential across diverse biomedical and industrial applications. This review explores the synthesis, optimization, and versatile applications of electrospun pectin nanofibers, highlighting their unique properties, including biocompatibility, biodegradability, and adaptability for functionalization. Pectin's structural diversity, coupled with its ability to form hydrogels and interact with biological systems, makes it a promising candidate for wound healing, drug delivery, tissue engineering, and smart packaging. Electrospinning has enabled the fabrication of pectin nanofibers with tunable morphology and functionality, overcoming traditional limitations such as poor mechanical strength. Advances in blending pectin with other polymers and incorporating bioactive agents have further enhanced their mechanical, biological, and therapeutic properties. In wound healing, pectin nanofibers mimic the extracellular matrix, promote angiogenesis, and deliver bioactive compounds to accelerate tissue regeneration. Challenges such as scalability, regulatory compliance, and mechanical limitations remain barriers to widespread adoption. This review underscores the need for interdisciplinary research to address these challenges and advance the clinical and commercial translation of pectin nanofibers. By critically analyzing recent advancements and outlining future directions, this review highlights the transformative potential of electrospun pectin nanofibers as sustainable, high-performance biomaterials for modern biomedical and industrial applications.
Collapse
Affiliation(s)
- Haoyu Wang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China; Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zenan Tian
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Long Wang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China
| | - Haifan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuxing Zhang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China.
| | - Zhibin Shi
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
4
|
Patel DK, Won SY, Jung E, Han SS. Recent progress in biopolymer-based electrospun nanofibers and their potential biomedical applications: A review. Int J Biol Macromol 2025; 293:139426. [PMID: 39753169 DOI: 10.1016/j.ijbiomac.2024.139426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Tissue engineering offers an alternative approach to developing biological substitutes that restore, maintain, or enhance tissue functionality by integrating principles from medicine, biology, and engineering. In this context, biopolymer-based electrospun nanofibers have emerged as attractive platforms due to their superior physicochemical properties, including excellent biocompatibility, non-toxicity, and desirable biodegradability, compared to synthetic polymers. Considerable efforts have been dedicated to developing suitable substitutes for various biomedical applications, with electrospinning receiving considerable attention as a versatile technique for fabricating nanofibrous platforms. While the applications of biopolymer-based electrospun nanofibers in the biomedical field have been previously reviewed, recent advancements in the electrospinning technique and its specific applications in areas such as bone regeneration, wound healing, drug delivery, and protein/peptide delivery remain underexplored from a material science perspective. This work systematically highlights the effects of biopolymers and critical parameters, including polymer molecular weight, viscosity, applied voltage, flow rate, and tip-to-collector distance, on the resulting nanofiber properties. The selection criteria for different biopolymers tailored to desired biomedical applications are also discussed. Additionally, the challenges and limitations associated with biopolymer-based electrospun nanofibers, alongside future perspectives for advancing their biomedical applications, are rationally analyzed.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Eunseo Jung
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
5
|
Kim SY, Muthuramalingam K, Lee HJ. Effects of fragmented polycaprolactone electrospun nanofiber in a hyaluronic acid hydrogel on fibroblasts. Tissue Cell 2024; 91:102582. [PMID: 39413457 DOI: 10.1016/j.tice.2024.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Hyaluronic acid (HA) hydrogels have shown promise as biomaterials for soft tissue engineering applications due to their biocompatibility and ability to mimic the extracellular matrix (ECM). However, their limited cell adhesion properties and the need for improved crosslinking methods have hindered their widespread use. In this study, we developed an ECM-mimicking HA hydrogel reinforced with alkaline hydrolyzed (1 M NaOH) fragmented (1.5 cm×1.5 cm) electrospun polycaprolactone (PCL) fibers to enhance cell adhesion and mechanical properties of HA hydrogel. Formation of HA hydrogel was achieved through a thiol-ene click reaction, which is initiated by exposure to visible blue light-activated biocompatible photoinitiator, riboflavin phosphate. The incorporation of alkaline hydrolyzed PCL fiber fragments (PFF) (0 %, 0.1 %, and 1 % w/v) into HA hydrogel precursor solution significantly increased the mechanical stiffness of the HA hydrogel, with the storage modulus ranging from 18.6 ± 0.7 Pa to 216.0 ± 38.2 Pa. The cytocompatibility of the PCL fiber-reinforced HA hydrogel was evaluated using NIH/3T3 fibroblasts. The results demonstrated improved cell adhesion, proliferation, and enhanced cellular functions, including increased production of glycosaminoglycans (GAGs) and collagen, in the PCL fiber-reinforced HA hydrogel compared to the control HA hydrogel. These findings suggest that the developed PCL fiber-reinforced HA hydrogel system, with tunable mechanical properties and excellent cytocompatibility, has potential applications in soft tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Seo Young Kim
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Karthika Muthuramalingam
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
6
|
Ning X, Wang R, Liu N, You Y, Wang Y, Wang J, Wang Y, Chen Z, Zhao H, Wu T. Three-dimensional structured PLCL/ADM bioactive aerogel for rapid repair of full-thickness skin defects. Biomater Sci 2024. [PMID: 39526449 DOI: 10.1039/d4bm01214c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The failure to treat deep skin wounds can result in significant complications, and the limitations of current clinical treatments highlight the pressing need for the development of new deep wound healing materials. In this study, a series of three-dimensional structured PLCL/ADM composite aerogels were fabricated by electrospinning and subsequently characterized for their microstructure, compression mechanics, exudate absorption, and hemostatic properties. Additionally, the growth of HSFs and HUVECs, which are involved in wound repair, was observed in the aerogels. The composite aerogel was subsequently employed in wound repair experiments on rat full-thickness skin with the objective of observing the wound healing rate and examining histological utilizing H&E, Masson, CD31, and COL-I staining. The findings indicated that the PLCL/ADM composite aerogel with a 10% concentration exhibited uniform pore size distribution, a good three-dimensional structure, and compression properties comparable to those of human skin, which could effectively absorb exudate and exert hemostatic effect. In vivo experiment results demonstrated that the aerogel exhibited superior efficacy to conventional oil-gauze overlay therapy and ADM aerogel in promoting wound healing and could facilitate rapid, high-quality in situ repair of deep wounds, thereby offering a novel approach for skin tissue engineering and clinical wound treatment.
Collapse
Affiliation(s)
- Xuchao Ning
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.
- Department of Plastic Surgery, Qilu Hospital (Qingdao), Shandong University, Qingdao 266035, China.
| | - Runjia Wang
- School of Stomatology, Shandong University, Jinan 250012, China
| | - Na Liu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yong You
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.
| | - Yawen Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, College of Textile & Clothing, Qingdao University, Qingdao 266071, China
| | - Jing Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, College of Textile & Clothing, Qingdao University, Qingdao 266071, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China
| | - Zhenyu Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.
| | - Haiguang Zhao
- Department of Plastic Surgery, Qilu Hospital (Qingdao), Shandong University, Qingdao 266035, China.
| | - Tong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, College of Textile & Clothing, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Rahimkhoei V, Alzaidy AH, Abed MJ, Rashki S, Salavati-Niasari M. Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics. Adv Colloid Interface Sci 2024; 329:103204. [PMID: 38797070 DOI: 10.1016/j.cis.2024.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Theranostic nanoparticles (NPs) have the potential to dramatically improve cancer management by providing personalized medicine. Inorganic NPs have attracted widespread interest from academic and industrial communities because of their unique physicochemical properties (including magnetic, thermal, and catalytic performance) and excellent functions with functional surface modifications or component dopants (e.g., imaging and controlled release of drugs). To date, only a restricted number of inorganic NPs are deciphered into clinical practice. This review highlights the recent advances of inorganic NPs in breast cancer therapy. We believe that this review can provides various approaches for investigating and developing inorganic NPs as promising compounds in the future prospects of applications in breast cancer treatment and material science.
Collapse
Affiliation(s)
- Vahid Rahimkhoei
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran
| | - Asaad H Alzaidy
- Department of Laboratory and Clinical Science, College of Pharmacy, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - May Jaleel Abed
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Somaye Rashki
- Department of Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Islamic Republic of Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Islamic Republic of Iran.
| |
Collapse
|
8
|
Villanueva-Lumbreras J, Rodriguez C, Aguilar MR, Avilés-Arnaut H, Cordell GA, Rodriguez-Garcia A. Nanofibrous ε-Polycaprolactone Matrices Containing Nano-Hydroxyapatite and Humulus lupulus L. Extract: Physicochemical and Biological Characterization for Oral Applications. Polymers (Basel) 2024; 16:1258. [PMID: 38732727 PMCID: PMC11085452 DOI: 10.3390/polym16091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Oral bone defects occur as a result of trauma, cancer, infections, periodontal diseases, and caries. Autogenic and allogenic grafts are the gold standard used to treat and regenerate damaged or defective bone segments. However, these materials do not possess the antimicrobial properties necessary to inhibit the invasion of the numerous deleterious pathogens present in the oral microbiota. In the present study, poly(ε-caprolactone) (PCL), nano-hydroxyapatite (nHAp), and a commercial extract of Humulus lupulus L. (hops) were electrospun into polymeric matrices to assess their potential for drug delivery and bone regeneration. The fabricated matrices were analyzed using scanning electron microscopy (SEM), tensile analysis, thermogravimetric analysis (TGA), FTIR assay, and in vitro hydrolytic degradation. The antimicrobial properties were evaluated against the oral pathogens Streptococcus mutans, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans. The cytocompatibility was proved using the MTT assay. SEM analysis established the nanostructured matrices present in the three-dimensional interconnected network. The present research provides new information about the interaction of natural compounds with ceramic and polymeric biomaterials. The hop extract and other natural or synthetic medicinal agents can be effectively loaded into PCL fibers and have the potential to be used in oral applications.
Collapse
Affiliation(s)
- Jaime Villanueva-Lumbreras
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza 66455, NL, Mexico; (J.V.-L.); (H.A.-A.)
| | - Ciro Rodriguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADIT), Apodaca 66629, NL, Mexico
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), 28006 Madrid, Spain;
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER.BBN, 28029 Madrid, Spain
| | - Hamlet Avilés-Arnaut
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza 66455, NL, Mexico; (J.V.-L.); (H.A.-A.)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60201, USA;
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Aida Rodriguez-Garcia
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza 66455, NL, Mexico; (J.V.-L.); (H.A.-A.)
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
| |
Collapse
|
9
|
Qiao H, Gao C, Lu C, Liu H, Zhang Y, Jin A, Dai Q, Yang S, Zhang B, Liu Y. A Novel Method for Fabricating the Undulating Structures at Dermal-Epidermal Junction by Composite Molding Process. J Funct Biomater 2024; 15:102. [PMID: 38667559 PMCID: PMC11051274 DOI: 10.3390/jfb15040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The dermal-epidermal junction (DEJ), located between the dermal-epidermal layers in human skin tissue, plays a significant role in its function. However, the limitations of biomaterial properties and microstructure fabrication methods mean that most current tissue engineered skin models do not consider the existence of DEJ. In this study, a nanofiber membrane that simulates the fluctuating structure of skin DEJ was prepared by the composite molding process. Electrospinning is a technique for the production of nanofibers, which can customize the physical and biological properties of biomaterials. At present, electrospinning technology is widely used in the simulation of customized natural skin DEJ. In this study, four different concentration ratios of poly (lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanofiber membranes were prepared based on electrospinning technology. We selected a 15%PLGA + 5%PCL nanofiber membrane with mechanical properties, dimensional stability, hydrophilicity, and biocompatibility after physical properties and biological characterization. Then, the array-based microstructure model was prepared by three-dimensional (3D) printing. Subsequently, the microstructure was created on a 15%PLGA + 5%PCL membrane by the micro-imprinting process. Finally, the cell proliferation and live/dead tests of keratinocytes (HaCaTs) and fibroblasts (HSFs) were measured on the microstructural membrane and flat membrane. The results showed that 15%PLGA + 5%PCL microstructure membrane was more beneficial to promote the adhesion and proliferation of HaCaTs and HSFs than a flat membrane.
Collapse
Affiliation(s)
- Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.Q.); (C.G.); (C.L.); (Y.Z.); (A.J.); (S.Y.); (B.Z.)
| | - Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.Q.); (C.G.); (C.L.); (Y.Z.); (A.J.); (S.Y.); (B.Z.)
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.Q.); (C.G.); (C.L.); (Y.Z.); (A.J.); (S.Y.); (B.Z.)
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China; (H.L.); (Q.D.)
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.Q.); (C.G.); (C.L.); (Y.Z.); (A.J.); (S.Y.); (B.Z.)
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.Q.); (C.G.); (C.L.); (Y.Z.); (A.J.); (S.Y.); (B.Z.)
| | - Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, China; (H.L.); (Q.D.)
| | - Shihmo Yang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.Q.); (C.G.); (C.L.); (Y.Z.); (A.J.); (S.Y.); (B.Z.)
| | - Bing Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.Q.); (C.G.); (C.L.); (Y.Z.); (A.J.); (S.Y.); (B.Z.)
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (H.Q.); (C.G.); (C.L.); (Y.Z.); (A.J.); (S.Y.); (B.Z.)
| |
Collapse
|
10
|
Gavande V, Nagappan S, Seo B, Lee WK. A systematic review on green and natural polymeric nanofibers for biomedical applications. Int J Biol Macromol 2024; 262:130135. [PMID: 38354938 DOI: 10.1016/j.ijbiomac.2024.130135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Electrospinning is the simplest technique to produce ultrathin nanofibers, which enables the use of nanotechnology in various applications. Nanofibrous materials produced through electrospinning have garnered significant attention in biomedical applications due to their unique properties and versatile potential. In recent years, there has been a growing emphasis on incorporating sustainability principles into material design and production. However, electrospun nanofibers, owing to their reliance on solvents associated with significant drawbacks like toxicity, flammability, and disposal challenges, frequently fall short of meeting environmentally friendly standards. Due to the limited solvent choices and heightened concerns for safety and hygiene in modern living, it becomes imperative to carefully assess the implications of employing electrospun nanofibers in diverse applications and consumer products. This systematic review aims to comprehensively assess the current state of research and development in the field of "green and natural" electrospun polymer nanofibers as well as more fascinating and eco-friendly commercial techniques, solvent preferences, and other green routes that respect social and legal restrictions tailored for biomedical applications. We explore the utilization of biocompatible and biodegradable polymers sourced from renewable feedstocks, eco-friendly processing techniques, and the evaluation of environmental impacts. Our review highlights the potential of green and natural electrospun nanofibers to address sustainability concerns while meeting the demanding requirements of various biomedical applications, including tissue engineering, drug delivery, wound healing, and diagnostic platforms. We analyze the advantages, challenges, and future prospects of these materials, offering insights into the evolving landscape of environmentally responsible nanofiber technology in the biomedical field.
Collapse
Affiliation(s)
- Vishal Gavande
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Saravanan Nagappan
- Industry-University Cooperation Foundation, Pukyong National University, Busan 48513, Republic of Korea
| | - Bongkuk Seo
- Advanced Industrial Chemistry Research Center, Advanced Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), 45 Jonggaro, Ulsan 44412, Republic of Korea
| | - Won-Ki Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|