1
|
Yan Z, Liu Y, Yuan Y. The plasticity of epithelial cells and its potential in the induced differentiation of gastric cancer. Cell Death Discov 2024; 10:512. [PMID: 39719478 DOI: 10.1038/s41420-024-02275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Cell plasticity refers to the deviation of cells from normal terminal differentiation states when faced with environmental and genetic toxic stresses, resulting in the phenomenon of transforming into other cell or tissue phenotypes. Unlocking phenotype plasticity has been defined as a hallmark of malignant tumors. The stomach is one of the organs in the body with the highest degree of self-renewal and exhibits significant cell plasticity. In this paper, based on the review of the characteristics of normal differentiation of gastric epithelial cells and their markers, the four main phenotypes of gastric epithelial cell remodeling and their relationship with gastric cancer (GC) are drawn. Furthermore, we summarize the regulatory factors and mechanisms that affect gastric epithelial cell plasticity and outline the current status of research and future prospection for the treatment targeting gastric epithelial cell plasticity. This study has important theoretical reference value for the in-depth exploration of epithelial cell plasticity and the tumor heterogeneity caused by it, as well as for the precise treatment of GC.
Collapse
Affiliation(s)
- Ziwei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yingnan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Zhu HJ, Zhou HM, Zhou XX, Li SJ, Zheng MJ, Xu Z, Dai WJ, Ban YB, Zhang MY, Zhang YZ, Lu JR, Xu YT, Wang SQ, Shi XJ, Duan YC. Discovery of Novel 5-Cyano-3-phenylindole-Based LSD1/HDAC Dual Inhibitors for Colorectal Cancer Treatment. J Med Chem 2024; 67:20172-20202. [PMID: 39540222 DOI: 10.1021/acs.jmedchem.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The dual inhibition of histone lysine-specific demethylase 1 (LSD1) and histone deacetylase (HDAC) has emerged as a promising strategy for cancer therapy. In this study, we report the discovery of novel 5-cyano-3-phenylindole-based LSD1/HDAC dual inhibitors, evaluated through both in vitro and in vivo assays. Among these inhibitors, compound 20c was identified as particularly potent, exhibiting high inhibitory activity against LSD1 (IC50 = 39.0 nM) and HDAC1/2/3/6/8 (IC50 = 1.4, 1.0, 1.3, 2.9, and 16.0 nM, respectively). Compound 20c effectively modulated the expression of biomarkers associated with LSD1 and HDAC inhibition and demonstrated superior antiproliferative activity compared to SAHA and 4SC-202 across multiple colorectal cancer cell lines. Following pharmacokinetic studies, 20c was further assessed in HCT-116 and HT-29 xenograft mouse models. It demonstrated significantly enhanced antitumor efficacy compared to SAHA, without causing observable toxicity. These findings highlight the potential of LSD1/HDAC dual inhibitors for the treatment of malignant cancers.
Collapse
Affiliation(s)
- Hui-Juan Zhu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Hui-Min Zhou
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Xiao-Xiao Zhou
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Shi-Jie Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Meng-Jie Zheng
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Zhen Xu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Wen-Jing Dai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yi-Bo Ban
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Meng-Yao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yi-Zhe Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Jia-Rui Lu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yong-Tao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Sai-Qi Wang
- Department of Oncology, Henan Province Engineering Research Center for of Intractable Digestive Tract Tumor Precision Therapy & Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province 450008, PR China
| | - Xiao-Jing Shi
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Ying-Chao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| |
Collapse
|
3
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|