1
|
Cai Y, Wu K. Exploration of the Dual Role of Dectin-1 in Tumor Development and Its Therapeutic Potential. Curr Oncol 2024; 31:7275-7286. [PMID: 39590166 PMCID: PMC11592733 DOI: 10.3390/curroncol31110536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitors like PD-1, PD-L1, and CTLA-4, has revolutionized cancer treatment. However, the role of the innate immune system, especially pattern recognition receptors, in cancer development and immunity is gaining more and more attention. Dectin-1, a C-type lectin receptor primarily involved in antifungal immunity, has emerged as a significant player in cancer biology, exhibiting both pro-tumor and anti-tumor roles. This dual function largely depends on the tumor type and microenvironment. Dectin-1 can promote immune responses against tumors like melanoma and breast cancer by enhancing both innate and adaptive immunity. However, in tumors like pancreatic ductal adenocarcinoma and colorectal cancer, Dectin-1 activation suppresses T cell immunity, facilitating tumor progression. This review explores the complex mechanisms by which Dectin-1 modulates the tumor microenvironment and discusses its potential as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ke Wu
- Department of Gastrointestinal Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
2
|
Dong W, Li Y, Xue S, Wen F, Meng D, Zhang Y, Yang R. Yeast polysaccharides: The environmentally friendly polysaccharides with broad application potentials. Compr Rev Food Sci Food Saf 2024; 23:e70003. [PMID: 39223755 DOI: 10.1111/1541-4337.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Yeast cell wall (YCW) polysaccharides, including β-glucans, mannans, chitins, and glycogens, can be extracted from the waste of beer industry. They are environmentally friendly, abundant, inexpensive raw materials, and have shown broad biological activities and application potentials. The exploitation of yeast polysaccharides is of great importance for environmental protection and resource utilization. This paper reviews the structural features and preparation of YCW polysaccharides. The solubility and emulsification of yeast polysaccharides and the properties of binding metal ions are presented. In addition, biological activities such as blood glucose and lipid lowering, immune regulation, antioxidant, promotion of intestinal health, and promotion of wound healing are proposed, highlighting the beneficial effects of yeast polysaccharides on human health. Through modification, the physical and chemical properties of yeast polysaccharides are changed, which emphasizes the promotion of their biological activities and properties. In addition, the food applications of yeast polysaccharides, including the food packaging film, emulsifier, thickening agent, and fat alternatives, are focused and discussed.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yichen Li
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Shurong Xue
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Jia J, Wang X, Lin X, Zhao Y. Engineered Microorganisms for Advancing Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313389. [PMID: 38485221 DOI: 10.1002/adma.202313389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Engineered microorganisms have attracted significant interest as a unique therapeutic platform in tumor treatment. Compared with conventional cancer treatment strategies, engineering microorganism-based systems provide various distinct advantages, such as the intrinsic capability in targeting tumors, their inherent immunogenicity, in situ production of antitumor agents, and multiple synergistic functions to fight against tumors. Herein, the design, preparation, and application of the engineered microorganisms for advanced tumor therapy are thoroughly reviewed. This review presents a comprehensive survey of innovative tumor therapeutic strategies based on a series of representative engineered microorganisms, including bacteria, viruses, microalgae, and fungi. Specifically, it offers extensive analyses of the design principles, engineering strategies, and tumor therapeutic mechanisms, as well as the advantages and limitations of different engineered microorganism-based systems. Finally, the current challenges and future research prospects in this field, which can inspire new ideas for the design of creative tumor therapy paradigms utilizing engineered microorganisms and facilitate their clinical applications, are discussed.
Collapse
Affiliation(s)
- Jinxuan Jia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaocheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xiang Lin
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
4
|
Zhang J, Wang S, Huang H, Chen H, Chen J, Zhang H. Cationic Starch Nanoparticles for Enhancing CpG Oligodeoxynucleotide-Mediated Antitumor Immunity. Biomacromolecules 2023; 24:5898-5904. [PMID: 37957110 DOI: 10.1021/acs.biomac.3c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
CpG ODNs demonstrate a significant promise for immunotherapy. However, their application is limited owing to quick DNase digestion and inadequate cellular internalization. Transportation of CpG ODNs into immune cells is crucial. Although viral vectors exhibit high transfection efficiency, safety risks, high cost, and low carrying capacity remain big obstacles. Herein, a novel CpG ODNs vector was fabricated by using starch. Starch was ultrasonicated and simply aminated (NH2-St) through grafting with diethylenetriamine, which was spherical with a diameter of 50 nm. NH2-St possessed good biocompatibility. Cationic NH2-St encapsulated CpG ODNs well and possessed a high loading capacity of 317 μg/mg. NH2-St protected CpG ODNs from nuclease digestion and significantly enhanced their cellular uptake. NH2-St/CpG induced the potent secretion of antitumor cytokines from macrophages and effectively suppressed the growth of tumor cells. This work highlights the promise of starch for CpG ODNs delivery, which brings new hope for cancer immunotherapy.
Collapse
Affiliation(s)
- Jiawen Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Honghui Huang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongqian Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|