1
|
Dong J, Ji B, Jiang Y, Fei F, Guo L, Liu K, Cui L, Meng X, Li J, Wang H. A20 Alleviates the Inflammatory Response in Bovine Endometrial Epithelial Cells by Promoting Autophagy. Animals (Basel) 2024; 14:2876. [PMID: 39409825 PMCID: PMC11475781 DOI: 10.3390/ani14192876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Endometritis represents a prevalent condition in perinatal dairy cows. Bovine endometrial epithelial cells (BEECs), as the primary interface between cavity and the external environment, are particularly vulnerable to infection by pathogenic bacteria following parturition. A20 is essential for regulating inflammation and modulating immune responses. Nevertheless, the exact role of A20 in the BEECs in response to inflammatory response is not fully understood. An endometritis model infected by Escherichia coli (E. coli) in vivo and a BEECs inflammation model induced with lipopolysaccharide (LPS) in vitro were built to investigate the function and governing mechanisms of A20 in endometritis. The results showed that infection with E. coli resulted in endometrial damage, inflammatory cell infiltration, and upregulation of inflammatory factors in dairy cows. Furthermore, A20 expression was upregulated in the endometrium of cows with endometritis and in BEECs following LPS stimulation. A20 overexpression attenuated the level of proinflammatory cytokines in LPS-stimulated BEECs; conversely, A20 knockdown lead to an exacerbated response to LPS stimulation. The overexpression of A20 was shown to activate autophagy and suppress the NF-κB signaling pathway in LPS-stimulated BEECs. However, blocking autophagy with chloroquine notably attenuated the anti-inflammatory effect of A20, leading to the activation of the NF-κB signaling pathway. In summary, the study demonstrated that A20's suppression of inflammation in LPS-stimulated BEECs is associated with the activation of autophagy. Therefore, the A20 protein showed potential as a novel treatment focus for managing endometritis in dairy cows.
Collapse
Affiliation(s)
- Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; (B.J.); (Y.J.); (F.F.); (L.G.); (K.L.); (L.C.); (X.M.); (J.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Bowen Ji
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; (B.J.); (Y.J.); (F.F.); (L.G.); (K.L.); (L.C.); (X.M.); (J.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Yeqi Jiang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; (B.J.); (Y.J.); (F.F.); (L.G.); (K.L.); (L.C.); (X.M.); (J.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Fan Fei
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; (B.J.); (Y.J.); (F.F.); (L.G.); (K.L.); (L.C.); (X.M.); (J.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; (B.J.); (Y.J.); (F.F.); (L.G.); (K.L.); (L.C.); (X.M.); (J.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; (B.J.); (Y.J.); (F.F.); (L.G.); (K.L.); (L.C.); (X.M.); (J.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; (B.J.); (Y.J.); (F.F.); (L.G.); (K.L.); (L.C.); (X.M.); (J.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; (B.J.); (Y.J.); (F.F.); (L.G.); (K.L.); (L.C.); (X.M.); (J.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; (B.J.); (Y.J.); (F.F.); (L.G.); (K.L.); (L.C.); (X.M.); (J.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; (B.J.); (Y.J.); (F.F.); (L.G.); (K.L.); (L.C.); (X.M.); (J.L.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Qi P, Liu X, Li C, Xu Q, Hu L, Duan H, Zhao G, Lin J. Progranulin Protects against Aspergillus fumigatus Keratitis by Attenuating the Inflammatory Response through Enhancing Autophagy. ACS Infect Dis 2024; 10:2826-2835. [PMID: 38900967 DOI: 10.1021/acsinfecdis.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Fungal keratitis (FK) is a severe corneal condition caused by pathogenic fungi and is associated with the virulence of fungi and an excessive tissue inflammatory response. Progranulin (PGRN), functioning as a multifunctional growth factor, exerts a pivotal influence on the regulation of inflammation and autophagy. The aim of our research was to analyze the role of PGRN in Aspergillus fumigatus (A. fumigatus) keratitis. We found that PGRN expression was increased in the mouse cornea with A. fumigatus keratitis. In our experiments, corneas of mice with FK were treated with 100 ng/mL of PGRN. In vitro, RAW 264.7 cells were treated with 10 ng/mL of PGRN before A. fumigatus stimulation. The findings suggested that PGRN effectively alleviated corneal edema and decreased the expression of pro-inflammatory cytokines in mice. In stimulated RAW 264.7 cells, PGRN treatment suppressed the expression of pro-inflammatory cytokines IL-6 and TNF-α but promoted the expression of the anti-inflammatory cytokines IL-10. PGRN treatment significantly upregulated the expression of autophagy-related proteins LC3, Beclin-1, and Atg-7. 3-Methyladenine (3-MA, autophagy inhibitor) reversed the regulation of inflammatory cytokines by PGRN. In addition, our study demonstrated that PGRN also enhanced phagocytosis in RAW 264.7 cells. In summary, PGRN attenuated the inflammatory response of A. fumigatus keratitis by increasing autophagy and enhanced the phagocytic activity of RAW 264.7 cells. This showed that PGRN had a protective effect on A. fumigatus keratitis.
Collapse
Affiliation(s)
- Pingli Qi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Huijin Duan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
3
|
Duan H, Meng F, Liu X, Qi P, Peng X, Li C, Wang Q, Zhao G, Lin J. Extracellular vesicles from Candida albicans modulate immune cells function and play a protective role in fungal keratitis. Microb Pathog 2024; 189:106606. [PMID: 38437994 DOI: 10.1016/j.micpath.2024.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Fungal keratitis (FK) is a highly blinding infectious corneal disease caused by pathogenic fungi. Candida albicans (C. albicans) is one of the main pathogens of fungal keratitis. Extracellular vesicles (EVs), lipid bilayer compartments released by almost all living cells, including fungi, have garnered attention for their role in pathogenic microbial infection and host immune responses in recent years. Studies have reported that pretreating the host with fungal EVs can reduce the inflammatory response of the host when attacked by fungi and reduce the lethality of fungal infection. However, there are no studies that have evaluated whether C. albicans EVs can modulate the inflammatory response associated with C. albicans keratitis. Our study revealed that C. albicans EVs could activate the polymorphonuclear cells (PMNs) and promote their secretion of proinflammatory cytokines and nitric oxide (NO), enhance their phagocytic and fungicidal abilities against C. albicans. C. albicans EVs also induced a proinflammatory response in RAW264.7 cells, which was characterized by increased production of inflammatory cytokines and elevated expression of the chemokine CCL2. Similarly, stimulation of C. albicans EVs to RAW264.7 cells also enhanced the phagocytosis and killing ability of cells against C. albicans. Besides, in our in vivo experiments, after receiving subconjunctival injection of C. albicans EVs, C57BL/6 mice were infected with C. albicans. The results demonstrated that pre-exposure to C. albicans EVs could effectively diminish the severity of keratitis, reduce fungal load and improve prognosis. Overall, we conclude that C. albicans EVs can modulate the function of immune cells and play a protective role in C. albicans keratitis.
Collapse
Affiliation(s)
- Huijin Duan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Fanyue Meng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Pingli Qi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xudong Peng
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|