1
|
Mei S, Roopashree R, Altalbawy FMA, Hamid JA, Ahmed HH, Naser BK, Rizaev J, AbdulHussein AH, Saud A, Hammoodi HA, Muzammil K, Al-Abdeen SHZ, Alhadrawi M. Synthesis, characterization, and applications of starch-based nano drug delivery systems for breast cancer therapy: A review. Int J Biol Macromol 2024; 280:136058. [PMID: 39341308 DOI: 10.1016/j.ijbiomac.2024.136058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The review examined the potential of starch-based drug delivery systems for managing breast cancer efficiently. It covered the background of breast cancer and the significance of drug delivery systems in treatment enhancement. Starch, known for its versatile physicochemical properties, was explored as a promising biopolymer for drug delivery. The review detailed the properties of starch relevant to drug delivery, synthesis methods, and characterization approaches. It discussed the application of starch-based systems in breast cancer treatment, focusing on their role in improving chemotherapy delivery. The advantages and limitations of these systems, such as biocompatibility and drug loading capacity, were evaluated, along with future research directions in starch modification and emerging technologies. The review concluded by emphasizing the potential of starch-based drug delivery systems in improving breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Shijuan Mei
- Department of Oncology Surgery II, Affiliated Hospital of Qinghai University, Xining 810001, Qinghai Province, China
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | | | | | | | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | | | - Abdulnaser Saud
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad 10011, Iraq.
| | | | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha 62561, Saudi Arabia.
| | - Salah Hassan Zain Al-Abdeen
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq.
| | - Merwa Alhadrawi
- Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, the Islamic University, Najaf, Iraq; Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
2
|
Alipournazari P, Pourmadadi M, Abdouss M, Rahdar A, Pandey S. Enhanced delivery of doxorubicin for breast cancer treatment using pH-sensitive starch/PVA/g-C 3N 4 hydrogel. Int J Biol Macromol 2024; 265:130901. [PMID: 38490383 DOI: 10.1016/j.ijbiomac.2024.130901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
This study introduces a starch/PVA/g-C3N4 nanocarrier hydrogel for pH-sensitive DOX delivery in breast cancer. DOX was loaded into the nanocarrier with 44.75 % loading efficiency and 88 % Entrapment Efficiency. The release of DOX from the starch/PVA/g-C3N4 hydrogel was pH-sensitive: DOX was released faster in the acidic environment pertinent to cancer tumors (with a pH level of 5.4) than in the surrounding regular tissue environment carrying a more neutral environment (pH 7.4). The release kinetics analysis, encompassing zero-order, first-order, Higuchi, and Korsmeyer-Peppas models, revealed significant fitting with the Higuchi model at both pH 5.4 (R2 = 0.99, K = 9.89) and pH 7.4 (R2 = 0.99, K = 5.70) levels. Finally, we found that hydrogel was less damaging to healthy cells and more specific to apoptotic cells than the drug's free form. The starch/PVA/g-C3N4 hydrogel had low toxicity for both normal cells and breast cancer cells, whereas DOX loaded into the starch/PVA/g-C3N4 hydrogel had higher toxicity for cancer cells than the DOX-only control samples, and led to specific high apoptosis for cancer cells. The study suggests that DOX can be loaded into a starch/PVA/g-C3N4 hydrogel to improve the specificity of the drug's release in cancer tumors or in vitro breast cancer cells.
Collapse
Affiliation(s)
| | - Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, Tehran, GC 1983963113, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran.
| | - Sadanand Pandey
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India; Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
3
|
Mehta CH, Velagacherla V, Manandhar S, Nayak Y, Pai SRK, Acharya S, Nayak UY. Development of Epigallocatechin 3-gallate-Loaded Hydrogel Nanocomposites for Oral Submucous Fibrosis. AAPS PharmSciTech 2024; 25:66. [PMID: 38519779 DOI: 10.1208/s12249-024-02787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Oral submucous fibrosis (OSF) is a chronic progressive disease associated with increased collagen deposition and TGF-β1 release. The current therapy and management have been a limited success due to low efficacy and adverse drug reactions. This study aimed to evaluate epigallocatechin 3-gallate (EGCG) encapsulated nanoparticles loaded mucoadhesive hydrogel nanocomposite (HNC) for OSF. Developed HNC formulations were evaluated for their permeation behaviour using in vitro as well as ex vivo studies, followed by evaluation of efficacy and safety by in vivo studies using areca nut extract-induced OSF in rats. The disease condition in OSF-induced rats was assessed by mouth-opening and biochemical markers. The optimized polymeric nanoparticles exhibited the required particle size (162.93 ± 13.81 nm), positive zeta potential (22.50 ± 2.94 mV) with better mucoadhesive strength (0.40 ± 0.002 N), and faster permeation due to interactions of the positively charged surface with the negatively charged buccal mucosal membrane. HNC significantly improved disease conditions by reducing TGF-β1 and collagen concentration without showing toxicity and reverting the fibroid buccal mucosa to normal. Hence, the optimized formulation can be further tested to develop a clinically alternate therapeutic strategy for OSF.
Collapse
Affiliation(s)
- Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shruthi Acharya
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
4
|
Jamroży M, Kudłacik-Kramarczyk S, Drabczyk A, Krzan M. Advanced Drug Carriers: A Review of Selected Protein, Polysaccharide, and Lipid Drug Delivery Platforms. Int J Mol Sci 2024; 25:786. [PMID: 38255859 PMCID: PMC10815656 DOI: 10.3390/ijms25020786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Studies on bionanocomposite drug carriers are a key area in the field of active substance delivery, introducing innovative approaches to improve drug therapy. Such drug carriers play a crucial role in enhancing the bioavailability of active substances, affecting therapy efficiency and precision. The targeted delivery of drugs to the targeted sites of action and minimization of toxicity to the body is becoming possible through the use of these advanced carriers. Recent research has focused on bionanocomposite structures based on biopolymers, including lipids, polysaccharides, and proteins. This review paper is focused on the description of lipid-containing nanocomposite carriers (including liposomes, lipid emulsions, lipid nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers), polysaccharide-containing nanocomposite carriers (including alginate and cellulose), and protein-containing nanocomposite carriers (e.g., gelatin and albumin). It was demonstrated in many investigations that such carriers show the ability to load therapeutic substances efficiently and precisely control drug release. They also demonstrated desirable biocompatibility, which is a promising sign for their potential application in drug therapy. The development of bionanocomposite drug carriers indicates a novel approach to improving drug delivery processes, which has the potential to contribute to significant advances in the field of pharmacology, improving therapeutic efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Mateusz Jamroży
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (S.K.-K.); (A.D.)
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 8 Niezapominajek Str., 30-239 Krakow, Poland;
| |
Collapse
|