1
|
Akyüz A, Ersus S. Optimization of Hoagland solution macro-elements as a culture media, for increasing protein content of duckweeds (Lemna minor). Food Chem 2024; 453:139647. [PMID: 38788644 DOI: 10.1016/j.foodchem.2024.139647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
This study aimed to increase the protein content of duckweed, a promising alternative to animal proteins and a sustainable source of plant protein cultivated via soilless agriculture, by manipulating the culture medium conditions (Hoagland solution). The contribution percentages of KH2PO4 and Ca(NO3)2, pivotal macro-elements in Hoagland solution affecting duckweed protein content, were determined using Plackett-Burman factorial design as 33.06 % and 36.61 %, respectively. Additionally, optimization was conducted employing response surface methodology, incorporating pH alongside KH2PO4 and Ca(NO3)2. Under optimal conditions of 3.92 mM KH2PO4, 7.95 mM Ca(NO3)2, and 7.22 pH, the protein content of duckweed increased significantly, reaching 51.09 % from 39.81 %. The duckweed cultivated in modified Hoagland solution exhibited protein content of 41.74 %, while duckweed grown in commercial Hoagland solution displayed protein content of 33.01 %. This study showed protein content of duckweed could significantly increase according to the growth medium and showcasing its potential as a sustainable source of plant protein.
Collapse
Affiliation(s)
- Ayça Akyüz
- Department of Food Engineering, Ege University, 35040 Bornova, İzmir, Turkey
| | - Seda Ersus
- Department of Food Engineering, Ege University, 35040 Bornova, İzmir, Turkey.
| |
Collapse
|
2
|
Miao J, Yu C, Cheng X, Qiu J, Liu S. Response Surface Methodology (RSM) for Optimizing Protein Extraction from Housefly ( Musca domestica) Larvae Fed with Toad and Its Structural Characterization. Molecules 2024; 29:2595. [PMID: 38893470 PMCID: PMC11173605 DOI: 10.3390/molecules29112595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
With the global population on the rise, an escalating interest exists in environmentally sustainable and friendly protein sources. Insects have emerged as multifaceted resources, viewed not only as potential food items, but also as sources of traditional medicines and proteins. This study utilized response surface methodology (RSM) to ascertain the optimal extraction conditions for proteins from Musca domestica used in toad feeding, denoted as MDPs-T. The yield of MDPs-T was elevated to 18.3% ± 0.2% under these optimized conditions. Subsequently, the particle size, ζ-potentials, and structures of MDPs-T were analyzed and compared with the proteins derived from Musca domestica fed on a normal diet (MDPs-ND). This comparative analysis utilized a range of advanced techniques, involving UV spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), high-performance gel permeation chromatography (HPGPC), and scanning electron microscopy (SEM). The outcomes have revealed a marginal disparity in the physical and chemical properties between MDPs-T and MDPs-ND. Derosination led to a reduction in the particle size of the MDPs by 10.98% to 62.81%. MDPs-T exhibited a higher proportion of low-molecular-weight components relative to MDPs-ND. Additionally, in a comparative analysis of amino acids, MDPs-T displayed a greater abundance of essential and total amino acids relative to MDPs-ND. Consequently, MDPs-T holds potential as a valuable food supplement for human consumption or as a nutrient-rich feed supplement for animals.
Collapse
Affiliation(s)
- Jingnan Miao
- Graduate School, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.M.); (C.Y.); (X.C.)
| | - Chenglu Yu
- Graduate School, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.M.); (C.Y.); (X.C.)
| | - Xianhe Cheng
- Graduate School, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.M.); (C.Y.); (X.C.)
| | - Junqiang Qiu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou 570100, China
| | - Shumin Liu
- Graduate School, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.M.); (C.Y.); (X.C.)
| |
Collapse
|
3
|
Wang D, Liu Y, Guo M, Sun J. Effect of Ball-Milling Treatment Combined with Glycosylation on the Structure and Functional Properties of Litopenaeus vannamei Protein. Foods 2024; 13:1284. [PMID: 38731655 PMCID: PMC11083002 DOI: 10.3390/foods13091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 05/13/2024] Open
Abstract
Litopenaeus vannamei protein (LVP) is a high-quality protein. However, its functional properties do not fully meet the needs of food processing. In this study, LVP-xylose conjugates were prepared by conventional wet heat method (GLVP) and ball-milling-assisted wet heat method (GBLVP), respectively. The changes in structure and functional properties of the glycosylated LVP were explored. The findings revealed that ball-milling pretreatment increased the grafting degree to 35.21%. GBLVP had a sparser surface structure and lower particle size than GLVP. FTIR spectra showed that xylose was grafted onto LVP successfully and GBLVP had the lowest α-helix content. Compared with GLVP, GBLVP had a decrease in intrinsic fluorescence intensity and surface hydrophobicity, and an increase in UV absorption intensity. Moreover, GBLVP had higher foaming capacity, solubility and water-holding capacity, and lower allergenicity than GLVP. However, ball-milling pretreatment had a negative impact on the vitro digestibility and oil-holding capacity of GBLVP. In conclusion, ball-milling-assisted treatment of glycosylation could effectively improve the functional properties of LVP, benefiting the broader application of LVP in the food industry.
Collapse
Affiliation(s)
| | | | | | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (D.W.); (Y.L.); (M.G.)
| |
Collapse
|
4
|
Elayeb R, Bermúdez-Oria A, Lazreg Aref H, Majdoub H, Ritzoulis C, Mannu A, Le Cerf D, Carraro M, Achour S, Fernández-Bolaños J, Trigui M. Antioxidant polysaccharide-enriched fractions obtained from olive leaves by ultrasound-assisted extraction with α-amylase inhibition, and antiproliferative activities. 3 Biotech 2024; 14:92. [PMID: 38425411 PMCID: PMC10899153 DOI: 10.1007/s13205-024-03939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Polysaccharide-rich materials were extracted from the alcohol-insoluble solids of Olea europaea l. **leaves. Structural characteristics were determined by colorimetric techniques, FT-IR, GC-MS, SEC/MALS/VD/DRI, and NMR (1H,13C). The extract and its main macromolecular components were characterized to assess their ability toward antioxidant, α-amylase inhibition, and antiproliferative activities. Results revealed that the ultrasound olive leave extract comprises polysaccharides with uronic acid, galactose, arabinose, and glucose in molar percentages of 11.7%, 11.3%, 7.5%, and 4.9% respectively, constituting 41% of the total mass. In addition, polyphenols (21%) and proteins (9%) are associated with these polysaccharides. Further, the extract showed noticeable ORAC and free radical scavenging abilities, in addition to high in vitro antiproliferative activity against Caco-2 colon carcinoma cell lines. Similarly, the extract exhibited a strong, uncompetitive inhibition of α-amylase by 75% in the presence of the extract with 0.75 µg/mL of concentration. This research concludes that ultrasound extraction method can be used for the extraction of polysaccharide-polyphenol-protein complexes. These conjugates exhibit the potential for combined biological activities resulting from a synergistic effect of its compounds, making them promising ingredients for the development of functional food.
Collapse
Affiliation(s)
- Rania Elayeb
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Houda Lazreg Aref
- Laboratory of Genetics, Biodiversity and Bioresources Valuation LR11S41, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia
| | - Christos Ritzoulis
- Department of Food Technology, ATEI of Thessaloniki, 57400 Thessaloniki, Greece
| | - Alberto Mannu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Didier Le Cerf
- UNIROUEN, INSA Rouen, CNRS, PBS, Normandie University, 76000 Rouen, France
| | - Massimo Carraro
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sami Achour
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Maher Trigui
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| |
Collapse
|