1
|
Liu C, Cao Z, Li L, Li Q, Zhang C, Wang Y, Li L, Fu P. Self-Assembled Pt/Honokiol Nanomicelles for the Treatment of Sepsis-Associated Acute Kidney Injury. ACS Biomater Sci Eng 2024. [PMID: 39681978 DOI: 10.1021/acsbiomaterials.4c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Sepsis is a severe and complex systemic infection that can result in multiple organ dysfunction. Sepsis-associated acute kidney injury (SAKI), caused by inflammatory response, oxidative stress, and cellular apoptosis, is a common complication that seriously impacts patient survival rates. Herein, a potent and novel metal-polyphenol nanomicelle can be efficiently self-assembled with Pt4+ and honokiol (HK) by the chelation, π-π conjugation, hydrophobic action, and the surfactant properties of Tween-80. These nanomicelles not only enhance drug bioavailability (encapsulation rates: Pt─49%, HK─70%) and reduce drug toxicity (safety dose: <20 μg/g) but also improve targeting toward damaged renal tissues. Furthermore, Pt4+ and HK in the nanomicelles exert a synergistic physiological effect by scavenging free radicals to alleviate oxidative damage, inhibiting macrophage activation and the release of inflammatory factors to regulate inflammation, and displaying broad-spectrum antimicrobial activity to control infection. These actions collectively protect renal tissue and restore its functionality. Here, we constructed metal-polyphenol nanomicelles (Pt/HK-NMs) via ingenious and efficient self-assembly, providing a new strategy to compensate for deficiencies in the hemodialysis and antibiotic treatment of SAKI.
Collapse
Affiliation(s)
- Chang Liu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhengjiang Cao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Qingyin Li
- Department of Nephrology, Institute of Kidney Diseases, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chunle Zhang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Linhua Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
2
|
Liu J, Fauconnier ML, Richel A, Jin Y. Preparation of active films with antioxidant and antimicrobial properties by combining ginger essential oil nanoemulsion with xylan and polyvinyl alcohol. Int J Biol Macromol 2024; 281:135780. [PMID: 39419679 DOI: 10.1016/j.ijbiomac.2024.135780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Due to the environmental challenges of petroleum-based packaging, new biodegradable and active food packaging has garnered significant attention. In this work, active films were generated with xylan/polyvinyl alcohol (PVA) as the film-forming matrix, combined with ginger essential oil nanoemulsions (GEO-NEs) at varying concentrations (2.0 %, 4.0 %, 6.0 %, and 8.0 % w/w). The GEO-NEs, produced via ultrasound, had a mean particle size measuring 176.4 ± 1.2 nm and demonstrated excellent stability for up to 28 d. FTIR and XRD analyses revealed that interactions between GEO-NEs and the film matrix occurred through hydrogen bonding, indicating good compatibility between the components. Incorporating GEO-NEs significantly enhanced the UV shielding performance and mechanical characteristics of the composite films, achieving mechanical characteristics comparable to those of commercial packaging materials such as high-density polyethylene (HDPE). Additionally, composite films with 2 % and 4 % GEO-NEs exhibited lower water vapor permeability (WVP) than the control film, indicating improved water barrier performance. GEO-NEs also significantly improved the antioxidant activity of the composite films and imparted certain antimicrobial properties. As a result, these films hold promise for applications in active food packaging.
Collapse
Affiliation(s)
- Junhan Liu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China; Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Yuhong Jin
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
3
|
Wei HN, Liu XY, Wang CC, Feng R, Zhang B. Characteristics of corn starch/polyvinyl alcohol composite film with improved flexibility and UV shielding ability by novel approach combining chemical cross-linking and physical blending. Food Chem 2024; 456:140051. [PMID: 38901078 DOI: 10.1016/j.foodchem.2024.140051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
With the aim of effectively improving the performance of bio-friendly food packaging and circumventing the hazards associated with petroleum-based plastic food packaging, composite films of corn starch and polyvinyl alcohol were prepared using a new method that involved chemical cross-linking of glutaraldehyde and blending with cinnamon essential oil nanoemulsion (CNE). Glutaraldehyde and CNE enhance the film's network structure by chemical bonding and hydrogen bonding, respectively. This results in improved surface smoothness, mechanical properties, and UV shielding ability of the film. However, the films' surface hydrophilicity increased as a result of CNE, which is harmful for food preservation in high humidity. Overall, glutaraldehyde and CNE have a synergistic effect on some of the properties of the film which is mainly attributed to the films' structure improvement. The films have great potential for preparing flexible and UV-shielding films and offer new ideas for developing biodegradable films.
Collapse
Affiliation(s)
- Hao-Nan Wei
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Xin-Yue Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Chen-Chen Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Ran Feng
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
4
|
Hossen MA, Shimul IM, Sameen DE, Rasheed Z, Dai J, Li S, Qin W, Tang W, Chen M, Liu Y. Essential oil-loaded biopolymeric particles on food industry and packaging: A review. Int J Biol Macromol 2024; 265:130765. [PMID: 38462119 DOI: 10.1016/j.ijbiomac.2024.130765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Essential oils (EOs) are liquid extracts derived from various parts of herbal or medicinal plants. They are widely accepted in food packaging due to their bioactive components, which exhibit remarkable antioxidant and antimicrobial properties against various pathogenic and food spoilage microorganisms. However, the functional efficacy of EOs is hindered by the high volatility of their bioactive compounds, leading to rapid release. Combining biopolymers with EOs forms a complex network within the polymeric matrix, reducing the volatility of EOs, controlling their release, and enhancing thermal and mechanical stability, favoring their application in food packaging or processing industries. This study presents a comprehensive overview of techniques used to encapsulate EOs, the natural polymers employed to load EOs, and the functional properties of EOs-loaded biopolymeric particles, along with their potential antioxidant and antimicrobial benefits. Additionally, a thorough discussion is provided on the widespread application of EOs-loaded biopolymers in the food industries. However, research on their utilization in confectionery processing, such as biscuits, chocolates, and others, remains limited. Further studies can be conducted to explore and expand the applications of EOs-loaded biopolymeric particles in food processing industries.
Collapse
Affiliation(s)
- Md Alomgir Hossen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China; Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Islam Md Shimul
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zainab Rasheed
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wuxia Tang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|