1
|
Recupido F, Ricchi F, Lama GC, Soriente A, Raucci MG, Buonocore GG, Cermelli C, Marchesi I, Paduano S, Bargellini A, Mansi A, Verdolotti L. Zein-based nanostructured coatings: A green approach to enhance virucidal efficacy of protective face masks. Int J Biol Macromol 2024; 290:138830. [PMID: 39694360 DOI: 10.1016/j.ijbiomac.2024.138830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Face masks represent a valuable tool to prevent the spreading of airborne viruses; however, they show poor comfort and scarce antiviral efficacy. Zein-based coatings are herein exploited to enhance antiviral performance. Zein functionalization is done through acidifying agents (lactic acid, LA). Coatings are characterized in terms of morphological, mechanical, breathability, and cytotoxicity analyses. The antiviral efficacy is tested in vitro against four viruses (Human Coronavirus OC43, Herpes Simplex Virus type 1, Human Adenovirus type 5, and MPox Virus) according to a biological assay on cell cultures. Zein/Zein LA antiviral activity seems to be linked to its positive surface charge that enables to form electrostatic interactions with negatively charged-viruses, resulting in the highest activity (reduction >2 Log) on Human Coronavirus OC43 and Herpes Simplex Virus type 1, with efficacy comparable or higher than that of copper/copper oxide-based- coatings. No significant activity is observed against Human Adenovirus type 5 and MPox Virus, due to their high resistance to inactivating treatments. Zein-based systems are not cytotoxic and their water vapor permeability is reduced of 26 % compared to that of not-coated systems. These promising results offer interesting insights into design of antiviral and sustainable coatings for personal protective equipment.
Collapse
Affiliation(s)
- Federica Recupido
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), National Research Council, Piazzale E. Fermi 1, 80055 Portici, Naples, Italy
| | - Francesco Ricchi
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy
| | - Giuseppe Cesare Lama
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), National Research Council, Piazzale E. Fermi 1, 80055 Portici, Naples, Italy
| | - Alessandra Soriente
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), National Research Council, Piazzale E. Fermi 1, 80055 Portici, Naples, Italy
| | - Maria Grazia Raucci
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), National Research Council, Piazzale E. Fermi 1, 80055 Portici, Naples, Italy
| | - Giovanna Giuliana Buonocore
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), National Research Council, Piazzale E. Fermi 1, 80055 Portici, Naples, Italy.
| | - Claudio Cermelli
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy.
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, Via Campi 287, 41125 Modena, Italy
| | - Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, Via Campi 287, 41125 Modena, Italy
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, Via Campi 287, 41125 Modena, Italy
| | - Antonella Mansi
- INAIL Research Area, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Letizia Verdolotti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), National Research Council, Piazzale E. Fermi 1, 80055 Portici, Naples, Italy
| |
Collapse
|
2
|
Alfatama M, Shahzad Y, Choukaife H. Recent advances of electrospray technique for multiparticulate preparation: Drug delivery applications. Adv Colloid Interface Sci 2024; 325:103098. [PMID: 38335660 DOI: 10.1016/j.cis.2024.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The electrospray (ES) technique has proven to be an effective and a versatile approach for crafting drug delivery carriers with diverse dimensions, multiple layers, and varying morphologies. Achieving the desired particle properties necessitates careful optimization of various experimental parameters. This review delves into the most prevalent ES system configurations employed for this purpose, such as monoaxial, coaxial, triaxial, and multi-needle setups with solid or liquid collector. In addition, this work underscores the significance of ES in drug delivery carriers and its remarkable ability to encapsulate a wide spectrum of therapeutic agents, including drugs, nucleic acids, proteins, genes and cells. Depth examination of the critical parameters governing the ES process, including the choice of polymer, surface tension, voltage settings, needle size, flow rate, collector types, and the collector distance was conducted with highlighting on their implications on particle characteristics, encompassing morphology, size distribution, and drug encapsulation efficiency. These insights illuminate ES's adaptability in customizing drug delivery systems. To conclude, this review discusses ES process optimization strategies, advantages, limitations and future directions, providing valuable guidance for researchers and practitioners navigating the dynamic landscape of modern drug delivery systems.
Collapse
Affiliation(s)
- Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| | - Yasser Shahzad
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia; Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| |
Collapse
|