1
|
Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femminò S, García-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhäuser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schlüter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 2018; 113:39. [PMID: 30120595 PMCID: PMC6105267 DOI: 10.1007/s00395-018-0696-8] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Derek Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- The National Institute of Health Research, University College London Hospitals Biomedial Research Centre, Research and Development, London, UK
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yon Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Antonucci
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Soni Deshwal
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Di Lisa
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - David García-Dorado
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), IIS-Fundación Jiménez Díaz, CIBERCV, Madrid, Spain
| | - Efstathios Iliodromitis
- Second Department of Cardiology, Faculty of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nina Kaludercic
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35121, Padua, Italy
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Markus Neuhäuser
- Department of Mathematics and Technology, Koblenz University of Applied Science, Remagen, Germany
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
| | - Michel Ovize
- Explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Lyon, France
- UMR, 1060 (CarMeN), Université Claude Bernard, Lyon1, Villeurbanne, France
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Michael Rahbek-Schmidt
- Department of Cardiology, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marisol Ruiz-Meana
- Experimental Cardiology, Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Pg. Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Skyschally
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - Catherine Wilder
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany.
| |
Collapse
|
2
|
Baracho SF, Pinheiro DJLL, Godoy CMGD, Coelho RC. A segmentation method for myocardial ischemia/infarction applicable in heart photos. Comput Biol Med 2017. [DOI: 10.1016/j.compbiomed.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Park C, Park EH, Chang K, Hong KS. Sector-Based Assessment of Infarct Size on Late-Gadolinium-Enhancement MRI in a Mouse Model of Acute Myocardial Infarction. Int Heart J 2016; 57:736-741. [PMID: 27818475 DOI: 10.1536/ihj.16-052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Scoring of myocardial infarction (MI) disease extent in cardiac magnetic resonance (CMR) images has been generally presented in terms of area-based infarct size. However, gradual thinning of the infarcted wall and compensatory hypertrophy of the noninfarcted remote wall during left ventricular (LV) remodeling after MI complicate the accuracy of infarct size measurement. In this study, we measured and compared infarct sizes in mice on late gadolinium enhancement (LGE) images using area-, length-, and radial sector-based methods.MI was induced by permanent ligation of the left coronary artery (n = 6). LGE images were acquired 30 minutes after intravenous injection of Gd-DTPA-BMA. Percentages of infarct size (%Area, %Length, and %Sector) on the LGE images were calculated and compared with histological findings.Infarct sizes obtained by an area-based approach were smaller than those obtained by other measurements. The area-based approach underestimated infarct size compared with the length-based approach. Most infarct sizes measured by each method demonstrated a similar trend, with maximum values determined by sector-based measurements using a mean + SD threshold. Spearman's rank correlation coefficients indicated that the 3 measurements were strongly correlated (P < 0.05) to each other. Significant differences and trends were observed between sector-based infarct sizes with different thresholds when 16 or more sectors were used.In conclusion, our study demonstrated that methods used for the histological calculation of infarct size could be applied to CMR analysis. Moreover, our results showed a similar trend to histological assessment. Sector-based CMR approaches can be useful for infarct size measurement.
Collapse
Affiliation(s)
- Cheongsoo Park
- Bio-imaging Research Team, Korea Basic Science Institute
| | | | | | | |
Collapse
|
4
|
Sirry MS, Butler JR, Patnaik SS, Brazile B, Bertucci R, Claude A, McLaughlin R, Davies NH, Liao J, Franz T. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression. J Mech Behav Biomed Mater 2016; 63:252-264. [DOI: 10.1016/j.jmbbm.2016.06.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 11/26/2022]
|
5
|
Borges JP, Verdoorn KS, Daliry A, Powers SK, Ortenzi VH, Fortunato RS, Tibiriçá E, Lessa MA. Delta opioid receptors: the link between exercise and cardioprotection. PLoS One 2014; 9:e113541. [PMID: 25415192 PMCID: PMC4240613 DOI: 10.1371/journal.pone.0113541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/27/2014] [Indexed: 12/26/2022] Open
Abstract
This study investigated the role of opioid receptor (OR) subtypes as a mechanism by which endurance exercise promotes cardioprotection against myocardial ischemia-reperfusion (IR) injury. Wistar rats were randomly divided into one of seven experimental groups: 1) control; 2) exercise-trained; 3) exercise-trained plus a non-selective OR antagonist; 4) control sham; 5) exercise-trained plus a kappa OR antagonist; 6) exercise-trained plus a delta OR antagonist; and 7) exercise-trained plus a mu OR antagonist. The exercised animals underwent 4 consecutive days of treadmill training (60 min/day at ∼70% of maximal oxygen consumption). All groups except the sham group were exposed to an in vivo myocardial IR insult, and the myocardial infarct size (IS) was determined histologically. Myocardial capillary density, OR subtype expression, heat shock protein 72 (HSP72) expression, and antioxidant enzyme activity were measured in the hearts of both the exercised and control groups. Exercise training significantly reduced the myocardial IS by approximately 34%. Pharmacological blockade of the kappa or mu OR subtypes did not blunt exercise-induced cardioprotection against IR-mediated infarction, whereas treatment of animals with a non-selective OR antagonist or a delta OR antagonist abolished exercise-induced cardioprotection. Exercise training enhanced the activities of myocardial superoxide dismutase (SOD) and catalase but did not increase the left ventricular capillary density or the mRNA levels of HSP72, SOD, and catalase. In addition, exercise significantly reduced the protein expression of kappa and delta ORs in the heart by 44% and 37%, respectively. Together, these results indicate that ORs contribute to the cardioprotection conferred by endurance exercise, with the delta OR subtype playing a key role in this response.
Collapse
Affiliation(s)
- Juliana P. Borges
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Scott K. Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Victor H. Ortenzi
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo S. Fortunato
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo Tibiriçá
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Marcos Adriano Lessa
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Lairez O, Lonjaret L, Ruiz S, Marchal P, Franchitto N, Calise D, Fourcade O, Mialet-Perez J, Parini A, Minville V. Anesthetic regimen for cardiac function evaluation by echocardiography in mice: comparison between ketamine, etomidate and isoflurane versus conscious state. Lab Anim 2013; 47:284-90. [PMID: 23864007 DOI: 10.1177/0023677213496236] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mice with genetic alterations are used in heart research for the extrapolation of human diseases. Echocardiography is an essential tool for evaluating cardiac and hemodynamic functions in small animals. The purpose of this study was to compare the effect of different anesthetic regimens and the conscious state on the evaluation of cardiac function by echocardiography. Mice were examined in the conscious state after three days of training, and then for a 7 min period after a single intraperitoneal injection of ketamine at 100 mg/kg, etomidate at 10, 20 or 30 mg/kg, or after inhalation of isoflurane at 1.5% with or without a short period of induction with isoflurane 3%. Intra- and inter-observer variabilities were assessed. The operator's comfort was also assessed. Heart rate, left ventricular end diastolic diameter, fraction shortening and cardiac output were measured using echocardiography. Ketamine at 5 and 7 min after induction and isoflurane at 3, 5 and 7 min after induction provided good anesthetic conditions and a quick awakening time, and did not influence cardiac performance, whereas the conscious state was associated with a non-physiological sympathetic activation and other anesthetic drugs induced a significant decrease in heart rate. Etomidate 10 mg/kg and 20 mg/kg were not enough to provide adequate anesthesia. Etomidate 30 mg/kg induced a good anesthetic condition but influenced cardiac performance and had a long awakening time. Our results indicate that ketamine and isoflurane with a short induction period are better anesthetic drugs than isoflurane without induction or etomidate for evaluating cardiac function in healthy mice.
Collapse
Affiliation(s)
- Olivier Lairez
- Department of Cardiology, Toulouse University Hospital, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lujan HL, Janbaih H, Feng HZ, Jin JP, DiCarlo SE. Myocardial ischemia, reperfusion, and infarction in chronically instrumented, intact, conscious, and unrestrained mice. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1384-400. [PMID: 22538514 DOI: 10.1152/ajpregu.00095.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the United States alone, the National Heart, Lung, and Blood Institute (NHLBI) has invested several hundred million dollars in pursuit of myocardial infarct-sparing therapies. However, due largely to methodological limitations, this investment has not produced any notable clinical application or cardioprotective therapy. Among the major methodological limitations is the reliance on animal models that do not mimic the clinical situation. In this context, the limited use of conscious animal models is of major concern. In fact, whenever possible, studies of cardiovascular physiology and pathophysiology should be conducted in conscious, complex models to avoid the complications associated with the use of anesthesia and surgical trauma. The mouse has significant advantages over other experimental models for the investigation of infarct-sparing therapies. The mouse is inexpensive, has a high throughput, and presents the ability of one to create genetically modified models. However, successful infarct-sparing therapies in anesthetized mice or isolated mouse hearts may not be successful in more complex models, including conscious mice. Accordingly, a conscious mouse model of myocardial ischemia and reperfusion has the potential to be of major importance for advancing the concepts and methods that drive the development of infarct-sparing therapies. Therefore, we describe, for the first time, the use of an intact, conscious, and unrestrained mouse model of myocardial ischemia-reperfusion and infarction. The conscious mouse model permits occlusion and reperfusion of the left anterior descending coronary artery in an intact, complex model free of the confounding influences of anesthetics and surgical trauma. This methodology may be adopted for advancing the concepts and ideas that drive cardiovascular research.
Collapse
Affiliation(s)
- Heidi L Lujan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
8
|
Hou Y, Huang C, Cai X, Zhao J, Guo W. Improvements in the establishment of a rat myocardial infarction model. J Int Med Res 2012; 39:1284-92. [PMID: 21986130 DOI: 10.1177/147323001103900416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coronary artery ligation is widely used for myocardial infarction (MI) induction in rats but produces a large variation in infarct size--a major determinant of mortality. Accurate control of infarct size is critically important for the establishment of a useful animal model. This study determined the anatomical course of the left anterior descending coronary artery (LAD) by direct visualization in order to locate precisely the position of ligation. MI was induced by conventional methods (control group) or using a detailed anatomical knowledge of the LAD (experimental group). Triphenyltetrazolium chloride (TTC) staining was performed to compare infarct size, and electrocardiogram (ECG) changes were observed. The rate of MI induction was significantly higher in the experimental group than in the control group (89.5% vs 65.6%) and the size of infarction was more consistent in the experimental group. Direct visualization of the rat LAD allowed accurate identification of the ligation site, thereby controlling infarct size and improving the success rate of the rat model.
Collapse
Affiliation(s)
- Y Hou
- Department of Cardiothoracic Surgery, Huai'an First Hospital Affiliated to Nanjing Medical University, Huai'an, China.
| | | | | | | | | |
Collapse
|
9
|
Galiuto L, Locorotondo G, Paraggio L, De Caterina AR, Leone AM, Fedele E, Barchetta S, Porto I, Natale L, Rebuzzi AG, Bonomo L, Crea F. Characterization of microvascular and myocardial damage within perfusion defect area at myocardial contrast echocardiography in the subacute phase of myocardial infarction. Eur Heart J Cardiovasc Imaging 2011; 13:174-80. [PMID: 22001191 DOI: 10.1093/ejechocard/jer190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Leonarda Galiuto
- Institute of Cardiology, Catholic University of the Sacred Heart, Policlinico A Gemelli, Largo A Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
High-Resolution Echocardiographic Assessment of Infarct Size and Cardiac Function in Mice with Myocardial Infarction. J Am Soc Echocardiogr 2011; 24:219-26. [DOI: 10.1016/j.echo.2010.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Indexed: 12/22/2022]
|
11
|
Chen X, Zha D, Xiu J, Liao Y, Cui K, Lin H, Jian Z, Hu F, Huang X, Zhou B, Huang Q, Bin J, Liu Y. A new hydrodynamic approach by infusion of drag-reducing polymers to improve left ventricular function in rats with myocardial infarction. Int J Cardiol 2011; 147:112-7. [DOI: 10.1016/j.ijcard.2010.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/16/2010] [Accepted: 09/04/2010] [Indexed: 11/29/2022]
|
12
|
Kay M, Swift L, Sangave A, Zderic V. High resolution contrast ultrasound and NADH fluorescence imaging of myocardial perfusion in excised rat hearts. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:969-72. [PMID: 19162819 DOI: 10.1109/iembs.2008.4649316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Simultaneous imaging of myocardial flow and hypoxia could be vital for identifying acute ischemic mechanisms that may trigger an arrhythmia. We have studied the distribution of flow and hypoxia in excised locally ischemic rat hearts using simultaneous contrast ultrasound imaging and beta-nicotinamide adenine dinucleotide (NADH) fluorescence imaging. Local ischemia was induced by controlling flow within a major coronary artery. Intra-myocardial flow was imaged using contrast high-resolution ultrasound (linear probe; 13-6 MHz). An ultrasound contrast agent (UCA) was used to highlight the ischemic border. We observed distinct borders between two perfusion beds. UCA images showed high contrast borders of flow. The progression of UCA through the tissue was clearly visible. Intramyocardial regions of flow overlap could be identified by superimposing images of UCA from two perfusion zones. Borders between hypoxic and normoxic tissue were clearly revealed by increased NADH fluorescence. Hypoxic borders were oriented along borders of flow. In summary, simultaneous ultrasound and NADH imaging of excised hearts from small animals provide high fidelity images for characterizing the distribution of flow and hypoxic tissue during acute localized ischemia.
Collapse
Affiliation(s)
- Matthew Kay
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA.
| | | | | | | |
Collapse
|
13
|
Wasmeier GH, Zimmermann WH, Schineis N, Melnychenko I, Voigt JU, Eschenhagen T, Flachskampf FA, Daniel WG, Nixdorff U. Real-time myocardial contrast echocardiography for assessing perfusion and function in healthy and infarcted wistar rats. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:47-55. [PMID: 17854980 DOI: 10.1016/j.ultrasmedbio.2007.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 06/22/2007] [Accepted: 06/22/2007] [Indexed: 05/17/2023]
Abstract
Real-time myocardial contrast echocardiography (MCE) is a noninvasive perfusion imaging method, whereas technical and resolution problems impair its application in small animals. Hence, we investigated the feasibility of MCE in experimental cardiovascular set-ups involving healthy and infarcted myocardium in rats. Twenty-five male Wistar rats were examined under volatile anesthesia (2.5% isoflurane) with high-resolution conventional 2-D echocardiography (2DE) and real-time MCE (Sonos 7,500 with 15MHz-transducer, Philips Medical Systems, Andover, MA, USA) in short-axis view. Contrast agent (SonoVue, Bracco, Milan, Italy) was infused as a bolus into a sublingual vein. Background-subtracted contrast signal intensity (SI) was measured off-line in six end-systolic segments and fitted to an exponential curve (gamma variate). Derived peak SI was subsequently calculated and compared with wall motion and common functional measured quantities (left ventricular end-diastolic diameter [LVEDD], area shortening [AS]). Recordings were performed before and 14 days after left anterior descending (LAD) ligature. Infarction induced anterior wall motion abnormalities (WMA) in all animals (16 akinetic, 9 hypokinetic), increased LVEDD (9.1 +/- 0.6 vs. 7.9 +/- 0.6 mm, p < 0.001), reduced AS (36.1 +/- 10.0 vs. 59.5 +/- 4.1%, p < 0.001) and reduced anterior segmental SI (0.4 +/- 0.4 dB akinetic / 1.7 +/- 1.7 dB hypokinetic vs. 15.8 +/- 10.9 dB preinfarct, p < 0.001 / p < 0.001). Segmental SI in normokinetic segments remained unchanged. Area at risk (perfusion defect) correlated well with WMA (r = 0.838). These data confirmed high-resolution real-time MCE as a rational tool for assessing myocardial perfusion of Wistar rats. It may therefore be a useful diagnostic tool for in-vivo cardiovascular research in small animals.
Collapse
Affiliation(s)
- Gerald H Wasmeier
- Second Medical Clinic, Friedrich Alexander University, Erlangen-Nuremberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xu Q, Ming Z, Dart AM, Du XJ. OPTIMIZING DOSAGE OF KETAMINE AND XYLAZINE IN MURINE ECHOCARDIOGRAPHY. Clin Exp Pharmacol Physiol 2007; 34:499-507. [PMID: 17439422 DOI: 10.1111/j.1440-1681.2007.04601.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Ketamine and xylazine (KX) mixture is the most commonly used anaesthetic drug during echocardiography in mice to induce sedation and immobility. Nevertheless, the doses of KX reported in the literature vary substantially with associated significant difference in cardiac function. To explore the optimal KX dosage and observation time for murine echocardiography, we compared the effects of various KX combinations on echocardiographic measurement. 2. Mice were anaesthetized with ketamine (50 or 100 mg/kg) and xylazine (0-10 mg/kg). Echocardiography was performed 5, 10, 20 and 40 min after induction of anaesthesia. Also, cardiac function was assessed in mice with and without pressure-overload induced left ventricle (LV) hypertrophy and dysfunction, either under anaesthesia with KX or whilst conscious. 3. Ketamine at 100 mg/kg alone or together with xylazine at 0.1 mg/kg was associated with a high and stable heart rate (HR), a high fractional shortening (FS) and produced the least effect on LV inner dimension at end of diastole (LVIDd). Ketamine and xylazine at 100 and 10 mg/kg, respectively, produced a lower and stable FS, but with a low and unstable HR. All other combinations resulted in depressed and unstable cardiac function during this period. 4. The dose-dependent suppression of FS by xylazine was counteracted partly by ketamine. 5. Although in the chronic pressure-overload model LV hypertrophy can be detected accurately in both the anaesthetized or conscious state, systolic dysfunction was masked partially by higher doses of xylazine (2.5 or 10 mg/kg) combined with ketamine at 100 mg/kg. 6. With KX anaesthesia, both the dose of xylazine and the anaesthetic duration are critical in achieving an ideal condition for murine echocardiography. Ketamine at 100 mg/kg alone produces acceptable anaesthesia, stable cardiac function with a minimal depressant effect and is therefore recommended if single-dose anaesthetic is to be used.
Collapse
Affiliation(s)
- Qi Xu
- Experimental Cardiology Laboratory, Baker Heart Research Institute and Alfred Heart Centre, Alfred Hospital, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
15
|
Takagawa J, Zhang Y, Wong ML, Sievers RE, Kapasi NK, Wang Y, Yeghiazarians Y, Lee RJ, Grossman W, Springer ML. Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. J Appl Physiol (1985) 2007; 102:2104-11. [PMID: 17347379 PMCID: PMC2675697 DOI: 10.1152/japplphysiol.00033.2007] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Efficacy of potential treatments for myocardial infarction (MI) is commonly assessed by histological measurement of infarct size in rodent models. In experiments involving an acute MI setting, measurement of the infarcted area in tissue sections of the left ventricle is a standard approach to determine infarct size. This approach has also been used in the chronic infarct setting to measure infarct area several weeks post-MI. We tested the hypothesis that, because wall thinning is known to occur in the chronic setting, the area measurement approach would be less appropriate. We compared infarct measurements in tissue sections based on 1) infarct area, 2) epicardial and endocardial infarct arc lengths, and 3) midline infarct arc length. Infarct sizes from all three measurement approaches correlated significantly with left ventricular ejection fraction and wall motion abnormality. However, the infarct size values derived from the area measurement approach were significantly smaller than those from the other two measurement approaches, and the range of values obtained was compressed 0.4-fold. The midline method allowed detection of the expected size differences between infarcts of variable severity resulting from proximal vs. distal ligation of the coronary artery. Segmental infarct size was correlated with segmental wall motion abnormality. We conclude that both area- and length-based measurements can be used to determine relative infarct size over a wide range of severity, although the area-based measurements are substantially more compressed due to wall thinning, and that the estimation of infarct midlines is a simple, reliable approach to infarct size assessment.
Collapse
Affiliation(s)
- Junya Takagawa
- University of California, San Francisco, Department of Medicine, Division of Cardiology, San Francisco, California, U.S.A
| | - Yan Zhang
- University of California, San Francisco, Department of Medicine, Division of Cardiology, San Francisco, California, U.S.A
| | - Maelene L. Wong
- University of California, San Francisco, Department of Medicine, Division of Cardiology, San Francisco, California, U.S.A
| | - Richard E. Sievers
- University of California, San Francisco, Department of Medicine, Division of Cardiology, San Francisco, California, U.S.A
| | - Neel K. Kapasi
- University of California, San Francisco, Department of Medicine, Division of Cardiology, San Francisco, California, U.S.A
| | - Yan Wang
- FivePrime Therapeutics, Inc., San Francisco, California, U.S.A
| | - Yerem Yeghiazarians
- University of California, San Francisco, Department of Medicine, Division of Cardiology, San Francisco, California, U.S.A
| | - Randall J. Lee
- University of California, San Francisco, Department of Medicine, Division of Cardiology, San Francisco, California, U.S.A
| | - William Grossman
- University of California, San Francisco, Department of Medicine, Division of Cardiology, San Francisco, California, U.S.A
| | - Matthew L. Springer
- University of California, San Francisco, Department of Medicine, Division of Cardiology, San Francisco, California, U.S.A
| |
Collapse
|
16
|
Funabashi N, Komiyama N, Asano M, Komuro I. Endocardial fibrosis in subacute non-Q wave myocardial infarction demonstrated by multislice computed tomography. Int J Cardiol 2006; 109:430-1. [PMID: 16697304 DOI: 10.1016/j.ijcard.2005.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 04/01/2005] [Indexed: 11/18/2022]
|