1
|
Ross MD. Endothelial Regenerative Capacity and Aging: Influence of Diet, Exercise and Obesity. Curr Cardiol Rev 2018; 14:233-244. [PMID: 30047332 PMCID: PMC6300798 DOI: 10.2174/1573403x14666180726112303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
Background: The endothelium plays an important role in cardiovascular regulation, from blood flow to platelet aggregation, immune cell infiltration and demargination. A dysfunctional endo-thelium leads to the onset and progression of Cardiovascular Disease (CVD). The aging endothelium displays significant alterations in function, such as reduced vasomotor functions and reduced angio-genic capabilities. This could be partly due to elevated levels of oxidative stress and reduced endothe-lial cell turnover. Circulating angiogenic cells, such as Endothelial Progenitor Cells (EPCs) play a significant role in maintaining endothelial health and function, by supporting endothelial cell prolifera-tion, or via incorporation into the vasculature and differentiation into mature endothelial cells. Howev-er, these cells are reduced in number and function with age, which may contribute to the elevated CVD risk in this population. However, lifestyle factors, such as exercise, physical activity obesity, and dietary intake of omega-3 polyunsaturated fatty acids, nitrates, and antioxidants, significantly af-fect the number and function of these circulating angiogenic cells. Conclusion: This review will discuss the effects of advancing age on endothelial health and vascular regenerative capacity, as well as the influence of diet, exercise, and obesity on these cells, the mecha-nistic links and the subsequent impact on cardiovascular health
Collapse
Affiliation(s)
- Mark D Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Hess S, Baker G, Gyenes G, Tsuyuki R, Newman S, Le Melledo JM. Decreased serum L-arginine and L-citrulline levels in major depression. Psychopharmacology (Berl) 2017; 234:3241-3247. [PMID: 28803324 DOI: 10.1007/s00213-017-4712-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/06/2017] [Indexed: 11/26/2022]
Abstract
RATIONALE It has been suggested that endothelial dysfunction caused by a decreased endothelial production of nitric oxide (NO) may contribute to the consistently observed increased risk of developing cardiovascular disease (CVD) in physically healthy patients suffering from major depression (MD). NO is a gas synthesized from Larginine (a conditionally essential amino acid) and oxygen by endothelial nitric oxide synthase (eNOS). The end products of NO production include both NO and L-citrulline. NO is rapidly reduced to the anions nitrite and nitrate, classically referred to as NO metabolites. Their measurement has been used as a surrogate measurement for endothelial NO production. We and others have shown decreased levels of NO metabolites in the serum of MD patients. The mechanism of this decreased production of NO by the endothelium has not yet been elucidated. OBJECTIVES The purpose of this study is to assess serum levels of L-arginine and L-citrulline in patients with MD. METHODS Levels of L-arginine and L-citrulline were measured in 35 unmedicated physically healthy MD patients and 36 healthy controls (HCs). RESULTS L-arginine and L-citrulline concentrations were significantly lower in MD patients than in healthy controls (L-arginine, 73.54 + 21.53 μmol/L and 84.89 + 25.16, p = 0.04 μmol/L and L-citrulline 31.58 + 6.05 μmol/L and 35.19 + 6.85 μmol/L, p = 0.03, respectively). CONCLUSIONS The decrease in L-arginine levels in MD patients is a possible explanation for the decrease in NO metabolites in MD patients and therefore may contribute, through endothelial dysfunction, to the increased CV risk associated with MD.
Collapse
Affiliation(s)
- S Hess
- Department of Psychiatry, University of Alberta, 114th street, Edmonton, AB, T6G 2B7, Canada
| | - G Baker
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, 114th street, Edmonton, AB, T6G 2B7, Canada
| | - G Gyenes
- Department of Cardiology, University of Alberta, 114th street, Edmonton, AB, T6G 2B7, Canada
| | - R Tsuyuki
- Department of Cardiology, University of Alberta, 114th street, Edmonton, AB, T6G 2B7, Canada
| | - S Newman
- Department of Psychiatry, University of Alberta, 114th street, Edmonton, AB, T6G 2B7, Canada
| | - Jean-Michel Le Melledo
- Department of Psychiatry, University of Alberta, 114th street, Edmonton, AB, T6G 2B7, Canada.
- University of Alberta Hospital, 114th street, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|
3
|
Maeda K, Alarcon EI, Suuronen EJ, Ruel M. Optimizing the host substrate environment for cardiac angiogenesis, arteriogenesis, and myogenesis. Expert Opin Biol Ther 2017; 17:435-447. [PMID: 28274146 DOI: 10.1080/14712598.2017.1293038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The diseased host milieu, such as endothelial dysfunction (ED), decreased NO bioavailability, and ischemic/inflammatory post-MI environment, hamper the clinical success of existing cardiac regenerative therapies. Area covered: In this article, current strategies including pharmacological and nonpharmacological approaches for improving the diseased host milieu are reviewed. Specifically, the authors provide focus on: i) the mechanism of ED in patients with cardiovascular diseases, ii) the current results of ED improving strategies in pre-clinical and clinical studies, and iii) the use of biomaterials as a novel modulator in damaged post-MI environment. Expert opinion: Adjunct therapies which improve host endothelial function have demonstrated promising outcomes, potentially overcoming disappointing results of cell therapy in human studies. In the future, elucidation of the interactions between the host tissue and therapeutic agents, as well as downstream signaling pathways, will be the next challenges in enhancing regenerative therapy. More careful investigations are also required to establish these agents' safety and efficacy for wide usage in humans.
Collapse
Affiliation(s)
- Kay Maeda
- a Divisions of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , ON , Canada
| | - Emilio I Alarcon
- a Divisions of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , ON , Canada
| | - Erik J Suuronen
- a Divisions of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , ON , Canada
| | - Marc Ruel
- a Divisions of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , ON , Canada
| |
Collapse
|
4
|
Wang X, Wei J, Pan L, Shi Y, Lin H, Gong H. The Role of CD36 in the Effect of Arginine in Atherosclerotic Rats. Med Sci Monit 2015; 21:1494-9. [PMID: 26003171 PMCID: PMC4453757 DOI: 10.12659/msm.893388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background The aim of this study was to investigate the effects of arginine in the development of atherosclerosis in rats fed a high-fat diet supplemented with arginine and to evaluate the role of CD36 in this process. Material/Methods A total of 40 Sprague-Dawley rats were randomly assigned to 4 groups: control group, fat diet group, simvastatin group, and arginine group. They were fed for 12 weeks and were then sacrificed. Immunohistochemical CD36 expression and pathology was investigated in the aorta; CD36 expression in mononuclear cells was detected by Western blot and RT-PCR. Results The thickness of the aortal intima, media, and I/M significantly decreased in the arginine group rats compared with those in the fat diet group (P<0.05). CD36 expression was up-regulated in rats in the fat diet group compared with the control group and was down-regulated in rats in the arginine group compared with rats in the fat diet group. Conclusions The addition of arginine has a significant effect on reducing rat atherosclerosis development, which may be attributed to both the down-regulation of CD36 expression in rat aortic endothelial and blood mononuclear cells and the NO pathway.
Collapse
Affiliation(s)
- Xin Wang
- Division of Cardiology, Department of Medicine, Jinshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Jianming Wei
- Division of Cardiology, Department of Medicine, Jinshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Lijian Pan
- Division of Cardiology, Department of Medicine, Jinshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Yijun Shi
- Division of Cardiology, Department of Medicine, Jinshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Haihong Lin
- Division of Cardiology, Department of Medicine, Jinshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Hui Gong
- Division of Cardiology, Department of Medicine, Jinshan Hospital, Fudan University, Shanghai, China (mainland)
| |
Collapse
|
5
|
Qi Y, Jiang Q, Chen C, Cao Y, Qian L. Circulating endothelial progenitor cells decrease in infants with bronchopulmonary dysplasia and increase after inhaled nitric oxide. PLoS One 2013; 8:e79060. [PMID: 24244420 PMCID: PMC3823930 DOI: 10.1371/journal.pone.0079060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Impairment of endothelial progenitor cells (EPCs) has been shown to contribute to the development of bronchopulmonary dysplasia (BPD). In the current study, the relationship between EPC changes of after birth and the development of BPD was investigated, and the effects of inhaled nitric oxide (iNO) on EPCs were evaluated. METHODS Sixty infants with a gestational age of less than 32 weeks and a birth weight of less than 1500 g were studied. NO was administered to infants who were receiving mechanical ventilation or CPAP for at least 2 days between the ages of 7 and 21 days. EPC level was determined by flow cytometry at birth, 7, 21 and 28 days of age and 36 weeks' postmenstrual age (PMA), before and after the iNO treatment. Plasma concentrations of vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 and granulocyte-macrophage colony-stimulating factor were determined via immunochemical assay. RESULTS Twenty-five neonates developed BPD, 35 neonates survived and did not develop BPD. EPC level was decreased on day 7 and 21 in infants who later developed BPD compared with infants that did not develop BPD. From birth to 21 days of age, BPD infants had a persistently lower VEGF concentration compared with non-BPD infants. No difference was found between the two groups at day 28 or 36 weeks PMA. In infants that later developed BPD, iNO raised the KDR(+)CD133(+) and CD34(+)KDR(+)CD133(+) EPC numbers along with increasing the level of plasma VEGF. CONCLUSION EPC level was reduced at 7 days of age in infants with BPD, and iNO increased the EPC number along with increasing the level of VEGF. Further studies are needed to elucidate the mechanism leading to the decrease of EPCs in infants with BPD and to investigate the role of iNO treatment in the prevention of BPD.
Collapse
Affiliation(s)
- Yuanyuan Qi
- Departments of Pediatrics, Children’s Hospital of Fudan University, Shanghai, P. R. China
| | - Qian Jiang
- Departments of Pediatrics, Children’s Hospital of Fudan University, Shanghai, P. R. China
| | - Chao Chen
- Departments of Pediatrics, Children’s Hospital of Fudan University, Shanghai, P. R. China
| | - Yun Cao
- Departments of Pediatrics, Children’s Hospital of Fudan University, Shanghai, P. R. China
| | - Liling Qian
- Departments of Pediatrics, Children’s Hospital of Fudan University, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
6
|
Khazaei M, Mobarakeh JI, Rahimi AA, Razavi MR. Effect of chronic L-Arginine supplementation on aortic fatty streak formation and serum nitric oxide concentration in normal and high-cholesterol fed rabbits. ACTA ACUST UNITED AC 2012; 99:87-93. [PMID: 22425811 DOI: 10.1556/aphysiol.99.2012.1.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several reports indicated the beneficial effects of short-term L-Arginine (L-Arg) administration on atherosclerosis processes. The aim of this study was to evaluate the effect of chronic L-Arg supplementation on serum lipid profile, aortic Fatty Streak (FS) formation, and serum Nitric oxide (NO) concentration in Normal Diet (ND) and High-Cholesterol Diet (HCD) fed rabbits. 24 male rabbits were randomly divided into four groups (n=6 in each group) (i): ND for seven months; (ii): ND for 1 month plus ND + L-Arg for six months; (iii): HCD (1%) for 1 month plus HCD (0.5%) for six months; (iv): HCD (1%) for 1 month plus HCD (0.5%) + L-Arg for six months. At the end of the study, histological evaluation of aortic FS formation was performed. Blood samples were taken for serum lipid profile and NO concentrations. L-Arg did not change serum total cholesterol, triglyceride, LDL and LDL/HDL ratio in normal and hypercholesterolemic rabbits (p>0.05). Histological examination of thoracic aortae revealed that the HCD group had higher FS formation compared to the ND group (2.1 ± 0.16 vs. 0 ± 0; respectively; p<0.05) and L-Arg supplementation did not attenuate FS formation in the HCD group (1.93 ± 0.17 compare to 2.1 ± 0.16; p>0.05). Serum NO level in the HCD group was higher than ND groups (p<0.05). Chronic L-Arg supplementation did not alter serum NO concentration either in the hypercholesterolemic or in the ND group (p>0.05). It seems that chronic L-Arg supplementation does not have beneficial effects on aortic fatty streak formation, serum lipids and NO concentrations in this model of experimental hypercholesterolemia.
Collapse
Affiliation(s)
- M Khazaei
- Isfahan University of Medical Sciences Department of Physiology Isfahan Iran
| | | | | | | |
Collapse
|
7
|
Inhaled NO contributes to lung repair in piglets with acute respiratory distress syndrome via increasing circulating endothelial progenitor cells. PLoS One 2012; 7:e33859. [PMID: 22448277 PMCID: PMC3309020 DOI: 10.1371/journal.pone.0033859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/22/2012] [Indexed: 01/11/2023] Open
Abstract
Background Nitric oxide (NO) plays an important role in mobilization of endothelial progenitor cells (EPCs). We hypothesized that inhaled NO (iNO) would induce EPC mobilization and therefore promote lung repair in acute respiratory distress syndrome (ARDS). Methodology/Principal Findings Healthy piglets were randomized into four groups (n = 6): Control (Con; mechanical ventilation only); ARDS (established by oleic acid infusion and mechanical ventilation); ARDS plus granulocyte-colony stimulating factor (G-CSF; 10 µg/kg/d subcutaneously); ARDS plus NO inhalation (iNO; 10 ppm). EPCs and mobilizing cytokines were assayed at different time points (baseline, 0, 24, 72 and 168 h) and injury reparation was assessed at 168 h. Compared to the Con group, the levels of EPCs were increased in bone marrow but not in blood in the ARDS group at 24 h. Compared to the ARDS group, inhaled NO induced a rapid elevation in the number of CD34+KDR+, KDR+CD133+ and CD34+KDR+CD133+ EPCs in blood (2163±454 vs. 1094±416, 1302±413 vs. 429±244, 1140±494 vs. 453±273 cells/ml, respectively, P<0.05), and a reduction in the percentage of KDR+CD133+ cells in bone marrow. Lung CD34, CD133, VEGF, VEGF receptor 2, endothelial NO synthase mRNA, and VEGF and VEGF receptor 2 protein expression levels were augmented in the iNO group, but not in the G-CSF group, compared to ARDS. Furthermore, iNO treatment reduced vascular permeability, increased pulmonary vessel density, and alleviated pulmonary edema and inflammation compared to ARDS treatment. Plasma VEGF, stromal cell-derived factor-1 (SDF-1) and bone marrow NO2−/NO3− were significantly higher in the iNO group compared to the ARDS group at 72 h. Conclusions These results suggest that iNO induces mobilization of EPCs from bone marrow into circulation, contributes to vascular repair, and thereby alleviates lung damage.
Collapse
|
8
|
Chuang SM, Juan YS, Long CY, Huang CH, Levin RM, Liu KM. The effect of L-arginine on bladder dysfunction following ovariectomy in a rabbit model. Int Urogynecol J 2011; 22:1381-8. [PMID: 21660538 DOI: 10.1007/s00192-011-1468-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/18/2011] [Indexed: 01/15/2023]
Abstract
INTRODUCTION AND HYPOTHESIS The present study was designed to investigate the effect of nitric oxide precursor, L: -arginine, on bladder function following ovariectomy. METHODS Twenty-eight New Zealand white female rabbits were separated into seven groups. Groups 1 to 6 underwent ovariectomy surgery. Among them, groups 1 and 2 received ovariectomy without treating with L-arginine. Groups 3, 4, 5, and 6 were given high L-arginine diet and were sacrificed 1, 3, 7, and 14 days after ovariectomy, respectively. Group 7 served as the control group. The effects of L: -arginine on the contractility of bladder tissues were determined in response to various stimulations. In addition, L-arginine effects on the expression of Rho kinase (ROK), protein kinase C potentiated inhibitor (CPI-17), caldesmon (CaD), and calponin (CaP) were studied by immunoblotting. RESULTS Ovariectomy significantly decreases contractile response to all forms of stimulation. Feeding rabbits L: -arginine significantly increases contractile response at 1 day following ovariectomy, but the response decreases to the control level by 14 days. Ovariectomy increases the expressions of both isoforms of CaD, CaP, and CPI-17; L-arginine treatment induces ROK underexpression, while CaP is overexpressed in the early few days of ovariectomy but returns to the control level at 2 weeks after ovariectomy. CONCLUSIONS Ovariectomy appreciably reduced bladder contractility. Treatment with L-arginine reversed the ovariectomy-induced bladder dysfunction. Decreased bladder contractile response was observed in the early days following ovariectomy.
Collapse
Affiliation(s)
- Shu-Mien Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Fleissner F, Thum T. Critical role of the nitric oxide/reactive oxygen species balance in endothelial progenitor dysfunction. Antioxid Redox Signal 2011; 15:933-48. [PMID: 20712407 PMCID: PMC3135185 DOI: 10.1089/ars.2010.3502] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/13/2010] [Indexed: 12/12/2022]
Abstract
Endothelial injury and dysfunction are critical events in the pathogenesis of cardiovascular disease. During these processes, an impaired balance of nitric oxide bioavailability and oxidative stress is mechanistically involved. Circulating angiogenic cells (including early and late outgrowth endothelial progenitor cells (EPC)) contribute to formation of new blood vessels, neovascularization, and homeostasis of the vasculature, and are highly sensitive for misbalance between NO and oxidative stress. We here review the role of the endothelial nitric oxide synthase and oxidative stress producing enzyme systems in EPC during cardiovascular disease. We also focus on the underlying molecular mechanisms and potential emerging drug- and gene-based therapeutic strategies to improve EPC function in cardiovascular diseased patients.
Collapse
Affiliation(s)
- Felix Fleissner
- Institute of Molecular and Translational Therapeutic Strategies, IFB-Tx, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, IFB-Tx, Hannover Medical School, Hannover, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Amjadi F, Javanmard SH, Zarkesh-Esfahani H, Khazaei M, Narimani M. Leptin promotes melanoma tumor growth in mice related to increasing circulating endothelial progenitor cells numbers and plasma NO production. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:21. [PMID: 21338489 PMCID: PMC3049751 DOI: 10.1186/1756-9966-30-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/21/2011] [Indexed: 01/08/2023]
Abstract
Background Epidemiological studies propose that obesity increases the risk of several cancers, including melanoma. Obesity increases the expression of leptin, a multifunctional peptide produced predominantly by adipocytes which may promote tumor growth. Several recently experiments have suggested that the tumors growth is in need of endothelial progenitor cell (EPC) dependent generation of new blood vessels. Our objectives in the present study were to examine the effects of leptin on melanoma growth, circulating EPCs number and plasma levels of nitric oxide metabolites (NOx). Methods 2 × 106 B16F10 melanoma cells were injected to thirty two C57BL6 mice subcutaneously. The mice were randomly divided into 4 groups (n = 8) in 8th day. Two groups were received twice daily intraperitoneal(i.p) injections of either PBS or recombinant murine leptin (1 μg/g initial body weight). Two groups were received i.p. injections of either 9F8 an anti leptin receptor antibody or the control mouse IgG at 50 μg/mouse every 3 consecutive days. By the end of the second week the animals were euthanized and blood samples and tumors were analyzed. Results The tumor weight, EPC numbers and NOx level in leptin, PBS, 9F8, and IgG group were (3.2 ± 0.6, 1.7 ± 0.3, 1.61 ± 0.2,1.7 ± 0.3 g), (222.66 ± 36.5, 133.33 ± 171, 23.33 ± 18, 132.66 ± 27.26/ml of blood), and (22.47 ± 5.5, 12.30 ± 1.5, 6.26 ± 0.84, 15.75 ± 6.3 μmol/L) respectively. Tumors weight and size, circulating EPC numbers and plasma levels of NOx were significantly more in the leptin than 9f8 and both control groups (p < 0.05). The plasma concentration of NOx significantly decreased in 9f8 treated mice compare to control group (p < 0.05). Conclusions In conclusion, our observations indicate that leptin causes melanoma growth likely through increased NO production and circulating EPC numbers and consequently vasculogenesis.
Collapse
Affiliation(s)
- Fatemehsadat Amjadi
- Applied Physiology Research Center and Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | |
Collapse
|