1
|
Fragão-Marques M, Vitorino R, Barroso I, Falcão-Pires I, Leite-Moreira A, Trindade F. Pericardial Fluid Annexin A1 Is a Marker of Atrial Fibrillation in Aortic Stenosis: A Proteomics Analysis. J Pers Med 2022; 12:jpm12020264. [PMID: 35207752 PMCID: PMC8880366 DOI: 10.3390/jpm12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia with adverse clinical outcomes. Pericardial fluid (PF) mirrors the heart’s pathophysiological status due to its proximity. This study aimed to characterise the PF proteome to identify new biomarkers of disease. Eighty-three patients submitted to aortic valve replacement surgery with severe aortic stenosis were selected, and their baseline echocardiographic and clinical variables were documented. Thirteen samples were selected blindly for proteome characterisation following a shotgun (GeLC–MS/MS) and a label-free quantification approach (LFQ). According to previous AF history, a partial least squares discriminant analysis (PLS-DA) was conducted, and the top 15 variables important in projection were identified. To inquire potential biomarkers, ROC curves were designed using LFQ data. Target proteins were further validated by ELISA, in both pericardial fluid and serum. Proteome analysis uncovered nine proteins up- and downregulated ≥2-fold. Annexin A1, annexin A2, and vimentin were among the top 15 most important variables for group discrimination in PLS-DA. Protein—protein interaction and gene ontology enrichment analysis presented functional interaction among identified proteins, which were all part of focal adhesion sites. Annexin A1 was increased in the pericardial fluid of AF patients but not in serum when quantified by ELISA. Annexin A1 is a novel pericardial fluid biomarker of AF in patients with severe aortic stenosis.
Collapse
Affiliation(s)
- Mariana Fragão-Marques
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal; (R.V.); (I.F.-P.); (A.L.-M.); (F.T.)
- Department of Clinical of Clinical Pathology, São João University Hospital Centre, 4200-319 Porto, Portugal;
- Correspondence: ; Tel.: +351-9261-60453
| | - Rui Vitorino
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal; (R.V.); (I.F.-P.); (A.L.-M.); (F.T.)
- iBiMED–Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isaac Barroso
- Department of Clinical of Clinical Pathology, São João University Hospital Centre, 4200-319 Porto, Portugal;
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal; (R.V.); (I.F.-P.); (A.L.-M.); (F.T.)
| | - Adelino Leite-Moreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal; (R.V.); (I.F.-P.); (A.L.-M.); (F.T.)
| | - Fábio Trindade
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal; (R.V.); (I.F.-P.); (A.L.-M.); (F.T.)
| |
Collapse
|
2
|
Agra-Bermejo RM, Cacho-Antonio C, Rozados-Luis A, Couselo-Seijas M, Fernandez AL, Martinez-Cereijo JM, Bravo SB, Gonzalez-Juanatey JR, Eiras S. CD5L, Macrophage Apoptosis Inhibitor, Was Identified in Epicardial Fat-Secretome and Regulated by Isoproterenol From Patients With Heart Failure. Front Physiol 2020; 11:620. [PMID: 32695009 PMCID: PMC7338428 DOI: 10.3389/fphys.2020.00620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives Neurohormonal dysfunction, which can regulate epicardial fat activity, is one of the main promoters of atrial fibrillation (AF) in patients with heart failure (HF). Our aim was to study the epicardial fat mediators for AF in patients with HF and its catecholaminergic regulation. Methods We have included 29 patients with HF who underwent cardiac surgery and were followed up for 5 years. Released proteins by epicardial adipose tissue (EAT) after isoproterenol treatment were identified by nano-high-performance liquid chromatography (HPLC) and triple time-of-flight (TOF) analysis. Common and differential identified proteins in groups of patients with AF before and after surgery were determined by the FunRich tool. Plasma and epicardial fat biopsy proteins were quantified by western blot. Results Our results identified 17 common released proteins by EAT, after isoproterenol treatment, from HF patients who suffered AF or developed new-onset AF during follow-up. Mostly, they were involved on inflammatory response and extracellular matrix. One of them was CD5L, a macrophage apoptosis inhibitor. Its secretion by isoproterenol treatment was validated on western blot. The CD5L levels on epicardial fat were also higher in the group of male patients who present or develop AF (0.44 ± 0.05 vs. 0.18 ± 0.15; p < 0.016). However, there were no differences regarding plasma levels. Conclusion Our results suggest the role of epicardial fat CD5L as a mediator of AF and its possible paracrine effect by catecholaminergic activity.
Collapse
Affiliation(s)
- Rosa M Agra-Bermejo
- Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.,Cardiovascular Area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain
| | - Carla Cacho-Antonio
- Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain
| | - Adriana Rozados-Luis
- Translational Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Marinela Couselo-Seijas
- Translational Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel L Fernandez
- CIBERCV, Madrid, Spain.,Heart Surgery Department, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - J M Martinez-Cereijo
- Heart Surgery Department, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - S B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose R Gonzalez-Juanatey
- Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.,Cardiovascular Area and Coronary Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain
| | - Sonia Eiras
- CIBERCV, Madrid, Spain.,Translational Cardiology Group, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Li W, Wang L, Wu Y, Yuan Z, Zhou J. Weighted gene co‑expression network analysis to identify key modules and hub genes associated with atrial fibrillation. Int J Mol Med 2019; 45:401-416. [PMID: 31894294 PMCID: PMC6984797 DOI: 10.3892/ijmm.2019.4416] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia and significantly increases the risks of morbidity, mortality and health care expenditure; however, treatment for AF remains unsatisfactory due to the complicated and incompletely understood underlying mechanisms. In the present study, weighted gene co‑expression network analysis (WGCNA) was conducted to identify key modules and hub genes to determine their potential associations with AF. WGCNA was performed in an AF dataset GSE79768 obtained from the Gene Expression Omnibus, which contained data from paired left and right atria in cardiac patients with persistent AF or sinus rhythm. Differentially expressed gene (DEG) analysis was used to supplement and validate the results of WGCNA. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were also performed. Green and magenta modules were identified as the most critical modules associated with AF, from which 6 hub genes, acetyl‑CoA Acetyltransferase 1, death domain‑containing protein CRADD, gypsy retrotransposon integrase 1, FTX transcript, XIST regulator, transcription elongation factor A like 2 and minichromosome maintenance complex component 3 associated protein, were hypothesized to serve key roles in the pathophysiology of AF due to their increased intramodular connectivity. Functional enrichment analysis results demonstrated that the green module was associated with energy metabolism, and the magenta module may be associated with the Hippo pathway and contain multiple interactive pathways associated with apoptosis and inflammation. In addition, the blue module was identified to be an important regulatory module in AF with a higher specificity for the left atria, the genes of which were primarily correlated with complement, coagulation and extracellular matrix formation. These results suggest that may improve understanding of the underlying mechanisms of AF, and assist in identifying biomarkers and potential therapeutic targets for treating patients with AF.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lijun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yue Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Juan Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
4
|
Liu H, Chen G, Zheng H, Qin H, Liang M, Feng K, Wu Z. Differences in atrial fibrillation‑associated proteins between the left and right atrial appendages from patients with rheumatic mitral valve disease: A comparative proteomic analysis. Mol Med Rep 2016; 14:4232-4242. [PMID: 27667121 PMCID: PMC5101960 DOI: 10.3892/mmr.2016.5776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/15/2016] [Indexed: 01/10/2023] Open
Abstract
The majority of proteomic studies have focused on identifying atrial fibrillation (AF)-associated proteins in the right atrium (RA), thus potential differences in AF-associated proteins between the RA and left atrium (LA) remain unknown. The aim of the present study was to perform proteomic analysis to compare the potential differences in AF-associated proteins between the right atrial appendage (RAA) and left atrial appendage (LAA) in patients with rheumatic mitral valve disease (RMVD). RAA and LAA tissues were obtained from 18 patients with RMVD (10 with AF) during mitral valve replacement surgery. Two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) proteomics analysis was performed using these tissues to identify AF-associated proteins in RAA and LAA. Subsequently, the proteomics data was validated using western blot analysis of nine selected proteins. In RAA, 32 AF-associated proteins were significantly dysregulated (15 upregulated and 17 downregulated). In LAA, 31 AF-associated proteins were significantly dysregulated (13 upregulated and 18 downregulated). Among these AF-associated proteins, 17 were AF-associated in both RAA and LAA, 15 were AF-associated only in RAA, and 14 were AF-associated only in LAA. Amongst the differentially expressed proteins, western blot analysis validated the results for 6 AF-associated proteins, and demonstrated similar distributions in RAA and LAA compared with the 2-D DIGE results. Of these proteins, 2 proteins were AF-associated in both RAA and LAA, 2 were AF-associated only in RAA, and 2 were AF-associated only in LAA. Additionally, the different distributions of AF-associated proteins in the RAA and LAA of patients with RMVD was analyzed, which may reflect the different regulatory mechanisms of the RA and LA in AF. These findings may provide new insights into the underlying molecular mechanisms of AF in patients with RMVD.
Collapse
Affiliation(s)
- Hai Liu
- Second Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Guangxian Chen
- Second Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hongsheng Zheng
- Department of Cardiac Surgery, Henan Provincial Chest Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Han Qin
- Second Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Mengya Liang
- Second Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Kangni Feng
- Second Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhongkai Wu
- Second Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
5
|
Cangemi C, Hansen ML, Argraves WS, Rasmussen LM. Fibulins and their role in cardiovascular biology and disease. Adv Clin Chem 2014; 67:245-65. [PMID: 25735864 DOI: 10.1016/bs.acc.2014.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fibulins are a group of extracellular matrix proteins of which many are present in high amounts in the cardiovascular system. They share common biochemical properties and are often found in relation to basement membranes or elastic fibers. Observations in humans with specific mutations in fibulin genes, together with results from genetically engineered mice and data from human cardiovascular tissue suggest that the fibulin family of proteins play important functional roles in the cardiovascular system. Moreover, fibulin-1 circulates in high concentrations in plasma and may function as a cardiovascular disease marker.
Collapse
Affiliation(s)
- Claudia Cangemi
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Maria Lyck Hansen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - William Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
6
|
Roselló-Lletí E, Alonso J, Cortés R, Almenar L, Martínez-Dolz L, Sánchez-Lázaro I, Lago F, Azorín I, Juanatey JRG, Portolés M, Rivera M. Cardiac protein changes in ischaemic and dilated cardiomyopathy: a proteomic study of human left ventricular tissue. J Cell Mol Med 2013; 16:2471-86. [PMID: 22435364 PMCID: PMC3823441 DOI: 10.1111/j.1582-4934.2012.01565.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The development of heart failure (HF) is characterized by progressive alteration of left ventricle structure and function. Previous works on proteomic analysis in cardiac tissue from patients with HF remain scant. The purpose of our study was to use a proteomic approach to investigate variations in protein expression of left ventricle tissue from patients with ischaemic (ICM) and dilated cardiomyopathy (DCM). Twenty-four explanted human hearts, 12 from patients with ICM and 12 with DCM undergoing cardiac transplantation and six non-diseased donor hearts (CNT) were analysed by 2DE. Proteins of interest were identified by mass spectrometry and validated by Western blotting and immunofluorescence. We encountered 35 differentially regulated spots in the comparison CNT versus ICM, 33 in CNT versus DCM, and 34 in ICM versus DCM. We identified glyceraldehyde 3-phophate dehydrogenase up-regulation in both ICM and DCM, and alpha-crystallin B down-regulation in both ICM and DCM. Heat shock 70 protein 1 was up-regulated only in ICM. Ten of the eleven differentially regulated proteins common to both aetiologies are interconnected as a part of a same network. In summary, we have shown by proteomics analysis that HF is associated with changes in proteins involved in the cellular stress response, respiratory chain and cardiac metabolism. Although we found altered expression of eleven proteins common to both ischaemic and dilated aetiology, we also observed different proteins altered in both groups. Furthermore, we obtained that seven of these eleven proteins are involved in cell death and apoptosis processes, and therefore in HF progression.
Collapse
Affiliation(s)
- Esther Roselló-Lletí
- Cardiocirculatory Unit, Research Center, Hospital Universitario La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Drews O. High-resolution separation of cardiovascular proteomes: two-dimensional electrophoresis and liquid chromatography. ACTA ACUST UNITED AC 2013; 5:592. [PMID: 23074339 DOI: 10.1161/circgenetics.110.958637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Oliver Drews
- Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
8
|
Scholze A, Bladbjerg EM, Sidelmann JJ, Diederichsen ACP, Mickley H, Nybo M, Argraves WS, Marckmann P, Rasmussen LM. Plasma concentrations of extracellular matrix protein fibulin-1 are related to cardiovascular risk markers in chronic kidney disease and diabetes. Cardiovasc Diabetol 2013; 12:6. [PMID: 23294625 PMCID: PMC3570481 DOI: 10.1186/1475-2840-12-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/03/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Fibulin-1 is one of a few extracellular matrix proteins present in blood in high concentrations. We aimed to define the relationship between plasma fibulin-1 levels and risk markers of cardiovascular disease. METHODS Plasma fibulin-1 was determined in subjects with chronic kidney disease (n = 32; median age 62.5, inter-quartile range 51 - 73 years) and 60 age-matched control subjects. Among kidney disease patients serological biomarkers related to cardiovascular disease (fibrinogen, interleukin 6, C-reactive protein) were measured. Arterial applanation tonometry was used to determine central hemodynamic and arterial stiffness indices. RESULTS We observed a positive correlation of fibulin-1 levels with age (r = 0.38; p = 0.033), glycated hemoglobin (r = 0.80; p = 0.003), creatinine (r = 0.35; p = 0.045), and fibrinogen (r = 0.39; p = 0.027). Glomerular filtration rate and fibulin-1 were inversely correlated (r = -0.57; p = 0.022). There was a positive correlation between fibulin-1 and central pulse pressure (r = 0.44; p = 0.011) and central augmentation pressure (r = 0.55; p = 0.001). In a multivariable regression model, diabetes, creatinine, fibrinogen and central augmentation pressure were independent predictors of plasma fibulin-1. CONCLUSION Increased plasma fibulin-1 levels were associated with diabetes and impaired kidney function. Furthermore, fibulin-1 levels were associated with hemodynamic cardiovascular risk markers. Fibulin-1 is a candidate in the pathogenesis of cardiovascular disease observed in chronic kidney disease and diabetes.
Collapse
Affiliation(s)
- Alexandra Scholze
- Clinical Research Unit, Department of Nephrology, Odense University Hospital, Odense, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dahl JS, Møller JE, Videbæk L, Poulsen MK, Rudbæk TR, Pellikka PA, Scott Argraves W, Rasmussen LM. Plasma fibulin-1 is linked to restrictive filling of the left ventricle and to mortality in patients with aortic valve stenosis. J Am Heart Assoc 2012; 1:e003889. [PMID: 23316326 PMCID: PMC3540672 DOI: 10.1161/jaha.112.003889] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/17/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Plasma fibulin-1 levels have been associated with N-terminal pro-B-type natriuretic peptide levels and left atrial size and shown to be predictive of mortality in patients with diabetes. The mechanisms behind these connections are not fully understood but are probably related to its roles as an extracellular matrix protein in cardiovascular tissues. METHODS AND RESULTS One hundred twenty-five patients with severe aortic stenosis who were scheduled for aortic valve replacement (AVR) were evaluated with preoperative echocardiography and their plasma fibulin-1 levels were determined with ELISA. The cohort was followed for a median of 4 years after AVR. Increased restrictive left ventricular (LV) filling pattern was observed with increased plasma fibulin-1 levels (2% versus 29% versus 24% in low, middle, and high plasma fibulin-1 tertile groups, P=0.004). Likewise, reduced longitudinal systolic LV function (6.6 ± 1.1 versus 6.1 ± 1.3 versus 5.7 ± 1.5 cm/s, P=0.05) and increased LV filling pressures was systolic velocity of the mitral annulus observed with increasing plasma fibulin-1 concentrations (ratio of early transmitral flow velocity to early diastolic flow velocity of the mitral annulus 13 ± 4 versus 15 ± 5 versus 16 ± 6 in the fibulin-1 tertile groups, P=0.04). CONCLUSIONS In patients with symptomatic severe aortic stenosis undergoing AVR, plasma fibulin-1 is associated with restrictive filling of the LV, decreased longitudinal systolic function of the LV, and increased LV filling pressures. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrial.gov with Identifier: NCT00294775.
Collapse
Affiliation(s)
- Jordi S Dahl
- Department of Cardiology, Odense University Hospital, Odense, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chugh S, Sharma P, Kislinger T, Gramolini AO. Clinical proteomics: getting to the heart of the matter. ACTA ACUST UNITED AC 2012; 5:377. [PMID: 22715282 DOI: 10.1161/circgenetics.110.957761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shaan Chugh
- Department of Physiology, University of Toronto, ON, Canada
| | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Ayesha I. De Souza
- From the Cardiovascular Sciences Research Centre, St. George’s University of London, London, United Kingdom
| | - A. John Camm
- From the Cardiovascular Sciences Research Centre, St. George’s University of London, London, United Kingdom
| |
Collapse
|
12
|
Rodrigo R. Prevention of postoperative atrial fibrillation: novel and safe strategy based on the modulation of the antioxidant system. Front Physiol 2012; 3:93. [PMID: 22518106 PMCID: PMC3325031 DOI: 10.3389/fphys.2012.00093] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/26/2012] [Indexed: 01/15/2023] Open
Abstract
Postoperative atrial fibrillation (AF) is the most common arrhythmia following cardiac surgery with extracorporeal circulation. The pathogenesis of postoperative AF is multifactorial. Oxidative stress, caused by the unavoidable ischemia-reperfusion event occurring in this setting, is a major contributory factor. Reactive oxygen species (ROS)-derived effects could result in lipid peroxidation, protein carbonylation, or DNA oxidation of cardiac tissue, thus leading to functional and structural myocardial remodeling. The vulnerability of myocardial tissue to the oxidative challenge is also dependent on the activity of the antioxidant system. High ROS levels, overwhelming this system, should result in deleterious cellular effects, such as the induction of necrosis, apoptosis, or autophagy. Nevertheless, tissue exposure to low to moderate ROS levels could trigger a survival response with a trend to reinforce the antioxidant defense system. Administration of n-3 polyunsaturated fatty acids (PUFA), known to involve a moderate ROS production, is consistent with a diminished vulnerability to the development of postoperative AF. Accordingly, supplementation of n-3 PUFA successfully reduced the incidence of postoperative AF after coronary bypass grafting. This response is due to an up-regulation of antioxidant enzymes, as shown in experimental models. In turn, non-enzymatic antioxidant reinforcement through vitamin C administration prior to cardiac surgery has also reduced the postoperative AF incidence. Therefore, it should be expected that a mixed therapy result in an improvement of the cardioprotective effect by modulating both components of the antioxidant system. We present novel available evidence supporting the hypothesis of an effective prevention of postoperative AF including a two-step therapeutic strategy: n-3 PUFA followed by vitamin C supplementation to patients scheduled for cardiac surgery with extracorporeal circulation. The present study should encourage the design of clinical trials aimed to test the efficacy of this strategy to offer new therapeutic opportunities to patients challenged by ischemia-reperfusion events not solely in heart, but also in other organs such as kidney or liver in transplantation surgeries.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| |
Collapse
|
13
|
Neiman M, Hedberg JJ, Dönnes PR, Schuppe-Koistinen I, Hanschke S, Schindler R, Uhlén M, Schwenk JM, Nilsson P. Plasma Profiling Reveals Human Fibulin-1 as Candidate Marker for Renal Impairment. J Proteome Res 2011; 10:4925-34. [DOI: 10.1021/pr200286c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Maja Neiman
- Science for Life Laboratory Stockholm, KTH - Royal Institute of Technology, Box 1031, SE-17121 Solna, Sweden
| | - Jesper J. Hedberg
- Department of Molecular Toxicology, Safety Assessment, AstraZeneca R&D Södertälje, SE-15185 Södertälje, Sweden
| | - Pierre R. Dönnes
- Department of Molecular Toxicology, Safety Assessment, AstraZeneca R&D Södertälje, SE-15185 Södertälje, Sweden
| | - Ina Schuppe-Koistinen
- Department of Molecular Toxicology, Safety Assessment, AstraZeneca R&D Södertälje, SE-15185 Södertälje, Sweden
| | - Stephan Hanschke
- Nephrology and Internal Intensive Care Medicine, Charité-Virchow Clinic, Augustenburger Platz 1, DE-13353 Berlin, Germany
| | - Ralf Schindler
- Nephrology and Internal Intensive Care Medicine, Charité-Virchow Clinic, Augustenburger Platz 1, DE-13353 Berlin, Germany
| | - Mathias Uhlén
- Science for Life Laboratory Stockholm, KTH - Royal Institute of Technology, Box 1031, SE-17121 Solna, Sweden
| | - Jochen M. Schwenk
- Science for Life Laboratory Stockholm, KTH - Royal Institute of Technology, Box 1031, SE-17121 Solna, Sweden
| | - Peter Nilsson
- Science for Life Laboratory Stockholm, KTH - Royal Institute of Technology, Box 1031, SE-17121 Solna, Sweden
| |
Collapse
|
14
|
Khalil AA, Kabapy NF, Deraz SF, Smith C. Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta Rev Cancer 2011; 1816:89-104. [PMID: 21605630 DOI: 10.1016/j.bbcan.2011.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 02/08/2023]
Abstract
Heat shock proteins (HSP) are a family of proteins induced in cells exposed to different insults. This induction of HSPs allows cells to survive stress conditions. Mammalian HSPs have been classified into six families according to their molecular size: HSP100, HSP90, HSP70, HSP60, HSP40 and small HSPs (15 to 30kDa) including HSP27. These proteins act as molecular chaperones either helping in the refolding of misfolded proteins or assisting in their elimination if they become irreversibly damaged. In recent years, proteomic studies have characterized several different HSPs in various tumor types which may be putative clinical biomarkers or molecular targets for cancer therapy. This has led to the development of a series of molecules capable of inhibiting HSPs. Numerous studies speculated that over-expression of HSP is in part responsible for resistance to many anti-tumor agents and chemotherapeutics. Hence, from a pharmacological point of view, the co-administration of HSP inhibitors together with other anti-tumor agents is of major importance in overcoming therapeutic resistance. In this review, we provide an overview of the current status of HSPs in autoimmune, cardiovascular, and neurodegenerative diseases with special emphasis on cancer.
Collapse
Affiliation(s)
- Ashraf A Khalil
- Department of Protein Technology, Institute of Genetic Engineering and Biotechnology, Mubarak City for Scientific Research, New Borg Elarab, Alexandria, Egypt.
| | | | | | | |
Collapse
|