1
|
Hemosiderin Accumulation in Liver Decreases Iron Availability in Tachycardia-Induced Porcine Congestive Heart Failure Model. Int J Mol Sci 2022; 23:ijms23031026. [PMID: 35162949 PMCID: PMC8834801 DOI: 10.3390/ijms23031026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/02/2023] Open
Abstract
Despite advances in the management of iron deficiency in heart failure (HF), the mechanisms underlying the effects of treatment remain to be established. Iron distribution and metabolism in HF pathogenesis need to be clarified. We used a porcine tachycardia-induced cardiomyopathy model to find out how HF development influences hepatic and myocardial iron storing, focusing on ferritin, the main iron storage protein. We found that cumulative liver congestion (due to the decrease of heart function) overwhelms its capacity to recycle iron from erythrocytes. As a consequence, iron is trapped in the liver as poorly mobilized hemosiderin. What is more, the ferritin-bound Fe3+ (reflecting bioavailable iron stores), and assembled ferritin (reflecting ability to store iron) are decreased in HF progression in the liver. We demonstrate that while HF pigs show iron deficiency indices, erythropoiesis is enhanced. Renin–angiotensin–aldosterone system activation and hepatic hepcidin suppression might indicate stress erythropoiesisinduced in HF. Furthermore, assembled ferritin increases but ferritin-bound Fe3+ is reduced in myocardium, indicating that a failing heart increases the iron storage reserve but iron deficiency leads to a drop in myocardial iron stores. Together, HF in pigs leads to down-regulated iron bioavailability and reduced hepatic iron storage making iron unavailable for systemic/cardiac needs.
Collapse
|
2
|
Zacharski M, Tomaszek A, Kiczak L, Ugorski M, Bania J, Pasławska U, Rybinska I, Jankowska EA, Janiszewski A, Ponikowski P. Catabolic/Anabolic Imbalance Is Accompanied by Changes of Left Ventricular Steroid Nuclear Receptor Expression in Tachycardia-Induced Systolic Heart Failure in Male Pigs. J Card Fail 2021; 27:682-692. [PMID: 33450412 DOI: 10.1016/j.cardfail.2020.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Steroid hormones play an important role in heart failure (HF) pathogenesis, and clinical data have revealed disordered steroidogenesis in male patients with HF. However, there is still a lack of studies on steroid hormones and their receptors during HF progression. Therefore, a porcine model of tachycardia-induced cardiomyopathy corresponding to HF was used to assess steroid hormone concentrations in serum and their nuclear receptor levels in heart tissue during the consecutive stages of HF. METHODS AND RESULTS Male pigs underwent right ventricular pacing and developed a clinical picture of mild, moderate, or severe HF. Serum concentrations of dehydroepiandrosterone, testosterone, dihydrotestosterone, estradiol, aldosterone, and cortisol were assessed by enzyme-linked immunosorbent assay. Androgen receptor, estrogen receptor alpha, mineralocorticoid receptor, and glucocorticoid receptor messenger RNA levels in the left ventricle were determined by qPCR.The androgen level decreased in moderate and severe HF animals, while the corticosteroid level increased. The estradiol concentration remained stable. The quantitative real-time polymerase chain reaction revealed the downregulation of androgen receptor in consecutive stages of HF and increased expression of mineralocorticoid receptor messenger RNA under these conditions. CONCLUSIONS In the HF pig model, deteriorated catabolic/anabolic balance, manifested by upregulation of aldosterone and cortisol and downregulation of androgen signaling on the ligand level, was augmented by changes in steroid hormone receptor expression in the heart tissue.
Collapse
Affiliation(s)
- Maciej Zacharski
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - Alicja Tomaszek
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Pathology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Liliana Kiczak
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Jacek Bania
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Urszula Pasławska
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Diagnostics and Clinical Science, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University Toruń, Poland; Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Ilona Rybinska
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Italy
| | - Ewa Anita Jankowska
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland; Centre for Heart Diseases, University Hospital, Wroclaw, Poland
| | - Adrian Janiszewski
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Internal Disease and Veterinary Diagnosis, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, Poznań, Poland
| | - Piotr Ponikowski
- Regional Specialist Hospital in Wroclaw - Research and Development Centre, Wroclaw, Poland; Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland; Centre for Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
3
|
Lin YS, Chang TH, Shi CS, Wang YZ, Ho WC, Huang HD, Chang ST, Pan KL, Chen MC. Liver X Receptor/Retinoid X Receptor Pathway Plays a Regulatory Role in Pacing-Induced Cardiomyopathy. J Am Heart Assoc 2020; 8:e009146. [PMID: 30612502 PMCID: PMC6405706 DOI: 10.1161/jaha.118.009146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The molecular mechanisms through which high‐demand pacing induce myocardial dysfunction remain unclear. Methods and Results We created atrioventricular block in pigs using dependent right ventricular septal pacing for 6 months. Echocardiography was performed to evaluate dyssynchrony between pacing (n=6) and sham control (n=6) groups. Microarray and enrichment analyses were used to identify differentially expressed genes (DEGs) in the left ventricular (LV) myocardium between pacing and sham control groups. Histopathological and protein changes were also analyzed and an A cell pacing model was also performed. Pacing significantly increased mechanical dyssynchrony. Enrichment analysis using Ingenuity Pathway Analysis and the activation z‐score analysis method demonstrated that there were 5 DEGs (ABCA1, APOD, CLU, LY96, and SERPINF1) in the LV septum (z‐score=−0.447) and 5 DEGs (APOD, CLU, LY96, MSR1, and SERPINF1) in the LV free wall (z‐score=−1.000) inhibited the liver X receptor/retinoid X receptor (LXR/RXR) pathway, and 4 DEGs (ACTA2, MYL1, PPP2R3A, and SNAI2) activated the integrin‐linked kinase (ILK) pathway in the LV septum (z‐score=1.000). The pacing group had a larger cell size, higher degree of myolysis and fibrosis, and increased expression of intracellular lipid, inflammatory cytokines, and apoptotic markers than the sham control group. The causal relationships between pacing and DEGs related to LXR/RXR and ILK pathways, apoptosis, fibrosis, and lipid expression after pacing were confirmed in the cell pacing model. Luciferase reporter assay in the cell pacing model also supported inhibition of the LXR pathway by pacing. Conclusions Right ventricular septal‐dependent pacing was associated with persistent LV dyssynchrony–induced cardiomyopathy through inhibition of the LXR/RXR pathway.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- 1 Division of Cardiology Chang Gung Memorial Hospital Chiayi Taiwan.,2 Graduate Institute of Clinical Medical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
| | - Tzu-Hao Chang
- 3 Graduate Institute of Biomedical Informatics Taipei Medical University Taipei Taiwan
| | - Chung-Sheng Shi
- 2 Graduate Institute of Clinical Medical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
| | - Yi-Zhen Wang
- 4 Division of Cardiology Department of Internal Medicine Kaohsiung Chang Gung Memorial Hospital Chang Gung University College of Medicine Kaohsiung Taiwan
| | - Wan-Chun Ho
- 4 Division of Cardiology Department of Internal Medicine Kaohsiung Chang Gung Memorial Hospital Chang Gung University College of Medicine Kaohsiung Taiwan
| | - Hsien-Da Huang
- 5 The Warshel Institute of Computational Biology School of Science and Technology The Chinese University of Hong Kong Shenzhen China.,6 Department of Biological Science and Technology National Chiao Tung University Hsinchu Taiwan
| | - Shih-Tai Chang
- 1 Division of Cardiology Chang Gung Memorial Hospital Chiayi Taiwan
| | - Kuo-Li Pan
- 1 Division of Cardiology Chang Gung Memorial Hospital Chiayi Taiwan
| | - Mien-Cheng Chen
- 4 Division of Cardiology Department of Internal Medicine Kaohsiung Chang Gung Memorial Hospital Chang Gung University College of Medicine Kaohsiung Taiwan
| |
Collapse
|
4
|
Spannbauer A, Traxler D, Zlabinger K, Gugerell A, Winkler J, Mester-Tonczar J, Lukovic D, Müller C, Riesenhuber M, Pavo N, Gyöngyösi M. Large Animal Models of Heart Failure With Reduced Ejection Fraction (HFrEF). Front Cardiovasc Med 2019; 6:117. [PMID: 31475161 PMCID: PMC6702665 DOI: 10.3389/fcvm.2019.00117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) is defined by an ejection fraction (EF) below 40%. Many distinct disease processes culminate in HFrEF, among them acute and chronic ischemia, pressure overload, volume overload, cytotoxic medication, and arrhythmia. To study these different etiologies the development of accurate animal models is vital. While small animal models are generally cheaper, allow for larger sample sizes and offer a greater variety of transgenic models, they have important limitations in the context of HFrEF research. Small mammals have much higher heart rates and distinct ion channels. They also have much higher basal metabolic rates and their physiology in many ways does not reflect that of humans. The size of their organs also puts practical constraints on experiments. Therefore, large animal models have been developed to accurately simulate human HFrEF. This review aims to give a short overview of the currently established large animal models of HFrEF. The main animal models discussed are dogs, pigs, and sheep. Furthermore, multiple approaches for modeling the different etiologies of HF are discussed, namely models of acute and chronic ischemia, pressure overload, volume overload as well as cytotoxic, and tachycardic pacing approaches.
Collapse
Affiliation(s)
- Andreas Spannbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Alfred Gugerell
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Johannes Winkler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Julia Mester-Tonczar
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Claudia Müller
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Martin Riesenhuber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Nazeri A, Elayda MA, Segura AM, Stainback RF, Nathan J, Lee VV, Bove C, Sampaio L, Grace B, Massumi A, Razavi M. Comparative Efficacy of Nebivolol and Metoprolol to Prevent Tachycardia-Induced Cardiomyopathy in a Porcine Model. Tex Heart Inst J 2017; 43:477-481. [PMID: 28100964 DOI: 10.14503/thij-15-5495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic tachycardia is a well-known cause of nonischemic cardiomyopathy. We hypothesized that nebivolol, a β-blocker with nitric oxide activity, would be superior to a pure β-blocker in preventing tachycardia-induced cardiomyopathy in a porcine model. Fifteen healthy Yucatan pigs were randomly assigned to receive nebivolol, metoprolol, or placebo once a day. All pigs underwent dual-chamber pacemaker implantation. The medication was started the day after the pacemaker implantation. On day 7 after implantation, each pacemaker was set at atrioventricular pace (rate, 170 beats/min), and the pigs were observed for another 7 weeks. Transthoracic echocardiograms, serum catecholamine levels, and blood chemistry data were obtained at baseline and at the end of the study. At the end of week 8, the pigs were euthanized, and complete histopathologic studies were performed. All the pigs developed left ventricular cardiomyopathy but remained hemodynamically stable and survived to the end of the study. The mean left ventricular ejection fraction decreased from baseline by 34%, 20%, and 20% in the nebivolol, metoprolol, and placebo groups, respectively. These changes did not differ significantly among the 3 groups (P =0.51). Histopathologic analysis revealed mild left ventricular perivascular fibrosis with cardiomyocyte hypertrophy in 14 of the 15 pigs. Both nebivolol and metoprolol failed to prevent cardiomyopathy in our animal model of persistent tachycardia and a high catecholamine state.
Collapse
|
6
|
Direct epicardial assist device using artificial rubber muscle in a swine model of pediatric dilated cardiomyopathy. Int J Artif Organs 2015; 38:588-94. [PMID: 26659480 DOI: 10.5301/ijao.5000447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2015] [Indexed: 11/20/2022]
Abstract
PURPOSE Ventricular assist devices are a potent alternative or bridge therapy to heart transplants for dilated cardiomyopathy patients. However, ventricular assist devices have problems related to biocompatibility, hemocompatibility, and thromboembolic events, especially in younger patients. The present study examined the hemodynamic effects of a direct cardiac compression device using circumferential artificial rubber muscles in a young swine model of dilated cardiomyopathy. METHODS Dilated cardiomyopathy was established in 6 pigs (6-8 weeks of rapid right ventricular pacing; average weight, 22.6 ± 2.1 kg). The device was designed using pneumatic rubber muscles (Fluidic Muscle, Festo). Hemodynamic parameters were monitored under baseline conditions, after the assistance, and after inducing ventricular fibrillation. Hemodynamic data were acquired using a PiCCO, multilumened thermodilution catheter in the pulmonary artery, left ventricular pressure monitoring, and epicardial echocardiography. RESULTS Direct epicardial assistance resulted in a significant improvement in hemodynamic data. Cardiac output improved from 1.39 ± 0.24 L/min to 1.96 ± 0.46 (p = 0.02). Stroke volume (14.5 ± 3.2 mL versus 20.1 ± 4.3 ml, p<0.01) and ejection fraction (25.2 ± 3.6% versus 47.7 ± 7.8%, p<0.01) also improved after assistance. After inducing ventricular fibrillation, cardiac output was maintained at 1.33 ± 0.28 L/min. CONCLUSIONS Use of a circumferential direct epicardial assistant device resulted in improvement in hemodynamic data in a dilated cardiomyopathy model. Although there is still a need for improvements in device components, the direct cardiac assist device may be a good alternative to recent heart failure device therapies.
Collapse
|
7
|
Kiczak L, Tomaszek A, Pasławska U, Bania J, Noszczyk-Nowak A, Skrzypczak P, Pasławski R, Zacharski M, Janiszewski A, Kuropka P, Ponikowski P, Jankowska EA. Sex differences in porcine left ventricular myocardial remodeling due to right ventricular pacing. Biol Sex Differ 2015; 6:32. [PMID: 26693003 PMCID: PMC4676102 DOI: 10.1186/s13293-015-0048-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/22/2015] [Indexed: 12/25/2022] Open
Abstract
Background Although sex differences in heart failure (HF) prevalence and severity have been recognized, its molecular mechanisms are poorly understood. We used a tachycardia-induced cardiomyopathy model to determine the sex specific remodeling pattern in male and female adult pigs. Methods We compared the echocardiographic and molecular measures of myocardial remodeling in 19 male and 12 female pigs with chronic symptomatic systolic HF due to right ventricle (RV) pacing (170 bpm) and 6 male and 5 female sham-operated controls. Males achieved subsequent HF stages earlier than females. Results The progression of symptomatic HF was associated with the reduction of the left ventricle (LV) ejection fraction in both sexes (all p < 0.05). A significant LV dilatation occurred only in males (p < 0.001). The HF development was accompanied by an increased pro-hypertrophic factor GATA4 and TGF-β1 messenger RNA (mRNA) expression in the LV only in male pigs (all p < 0.01). The total gelatinolytic activity in LV was higher in males than females (irrespective of HF, p < 0.05), and the HF progression was associated with a reduced total gelatinolytic activity (p < 0.05) in the LV only in males. No differences in LV myocardial collagen content were found between HF groups and sexes. Cardiomyocyte cross-sectional diameter was significantly smaller in male hearts as compared to female (p < 0.05). Conclusions Male and female porcine hearts respond differently to RV pacing. Males, most likely due to a higher extracellular matrix turnover, demonstrated a significant LV dilatation, followed by a strong induction of pro-hypertrophic program, and an earlier development of symptomatic HF. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0048-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liliana Kiczak
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, Kamienskiego Street 73a, 51-124 Wroclaw, Poland ; Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida Street 31, 50-375 Wroclaw, Poland
| | - Alicja Tomaszek
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, Kamienskiego Street 73a, 51-124 Wroclaw, Poland ; Department of Heart Diseases, Wroclaw Medical University, Weigla Street 5, 50-981 Wroclaw, Poland
| | - Urszula Pasławska
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, Kamienskiego Street 73a, 51-124 Wroclaw, Poland ; Department of Internal Diseases and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 47, 50-366 Wroclaw, Poland
| | - Jacek Bania
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, Kamienskiego Street 73a, 51-124 Wroclaw, Poland ; Department of Food Hygiene and Consumer Health Protection, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida Street 31, 50-375 Wroclaw, Poland
| | - Agnieszka Noszczyk-Nowak
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, Kamienskiego Street 73a, 51-124 Wroclaw, Poland ; Department of Internal Diseases and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 47, 50-366 Wroclaw, Poland
| | - Piotr Skrzypczak
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 51, 50-366 Wroclaw, Poland
| | - Robert Pasławski
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, Kamienskiego Street 73a, 51-124 Wroclaw, Poland ; Department and Clinic of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska Street 213, 50-556 Wroclaw, Poland
| | - Maciej Zacharski
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, Kamienskiego Street 73a, 51-124 Wroclaw, Poland ; Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida Street 31, 50-375 Wroclaw, Poland
| | - Adrian Janiszewski
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, Kamienskiego Street 73a, 51-124 Wroclaw, Poland ; Department of Internal Diseases and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 47, 50-366 Wroclaw, Poland
| | - Piotr Kuropka
- Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Ponikowski
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, Kamienskiego Street 73a, 51-124 Wroclaw, Poland ; Department of Heart Diseases, Wroclaw Medical University, Weigla Street 5, 50-981 Wroclaw, Poland
| | - Ewa A Jankowska
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, Kamienskiego Street 73a, 51-124 Wroclaw, Poland ; Department of Heart Diseases, Wroclaw Medical University, Weigla Street 5, 50-981 Wroclaw, Poland
| |
Collapse
|
8
|
Inducible NO synthase is constitutively expressed in porcine myocardium and its level decreases along with tachycardia-induced heart failure. Cardiovasc Pathol 2015; 25:3-11. [PMID: 26361649 DOI: 10.1016/j.carpath.2015.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 07/24/2015] [Accepted: 08/09/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The adverse effects of oxidative stress and the presence of proinflammatory factors in the heart have been widely demonstrated mainly on rodent models. However, larger clinical trials focusing on inflammation or oxidative stress in heart failure (HF) have not been carried out. This may be due to differences in the anatomy and physiology of the cardiovascular system between small rodents and large mammals. Thus, we investigated myocardial inflammatory factors, such as inducible NO synthase (iNOS) and oxidative stress indices in female pigs with chronic tachycardia-induced cardiomyopathy. METHODS Homogenous female siblings of Large White breed swine (n=15) underwent continuous right ventricular (RV) pacing at 170bpm, whereas five sham-operated subjects served as controls. In the course of RV pacing, animals developed a clinical picture of HF and were euthanized at subsequent stages of the disease: mild, moderate and severe HF. Left ventricle (LV) sections were examined with electron microscopy. The relative expression of iNOS in LV was determined by quantitative PCR. The protein level of iNOS was determined by Western blotting and immunohistochemistry. The level of the S-nitrosylated (S-NO) protein in LV was determined after S-NO moieties were substituted by biotin, followed by a colorimetrical detection with streptavidin. Malondialdehyde (MDA), a marker of lipid peroxidation, was evaluated in the LV and serum using thiobarbituric acid. The aconitase activity (based on measurement of the concomitant formation of NADPH from NADP(+)), a marker of oxidative stress, was analyzed in mitochondrial and cytosolic LV fractions. The concentration of interleukin-1β (IL-1β) was measured in LV homogenates using enzyme-linked immunosorbent assay. RESULTS RV pacing resulted in an impairment of LV systolic function, LV dilatation and neurohormonal activation. The electron microscopy revealed abnormalities within the cardiomyocytes of failing hearts, i.e. swollen mitochondria and myofibril derangement. iNOS was expressed in the control LV myocardium. The development of HF was accompanied by a decrease in iNOS mRNA (P<.05), which was also reflected at a protein level, and a decrease in the protein S-nitrosylation (P<.05). Both iNOS mRNA and S-NO relative moiety levels were inversely related to the dilatation of the LV (P<.05). There was no difference in the concentration of MDA in the LV and serum. Similarly, no differences in the concentration of IL-1β LV were found between diseased and healthy animals. Aconitase activity was decreased only in the LV mitochondrial fraction of pigs with severe HF. CONCLUSIONS iNOS was shown to be constitutively expressed within porcine LV. Its level decreases during the progression of systolic nonischemic HF in the pig model. Thus, it can be assumed that an up-regulation of proinflammatory factors is not involved in porcine tachycardia-induced cardiomyopathy and that the impact of oxidative stress may be restricted to the mitochondria in this HF model.
Collapse
|
9
|
Ge HY, Li XM, Tang XJ, Zhang Y, Liu HJ, Li YH. Optimal noninvasive assessment of initial left ventricular dysfunction in children with ectopic atrial tachycardia. Eur J Pediatr 2015; 174:1015-22. [PMID: 25665973 DOI: 10.1007/s00431-015-2500-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
UNLABELLED Tissue Doppler imaging (TDI) can identify cardiac dysfunction in adults. This study is aimed to improve early identification of initial left ventricular (LV) dysfunction secondary to ectopic atrial tachycardia (EAT) in children by TDI. A total of 70 children with EAT were included in the present study. Cardiac function was evaluated by conventional echocardiography, TDI, and plasma N-terminal pro-brain natriuretic peptide (NT-proBNP). Doppler signals obtained from the mitral inflow and TDI of the mitral annulus were the average values of three consecutive heartbeats. Left ventricular ejection fraction (LVEF), peak early diastolic transmitral velocity (E), peak systolic mitral annulus velocity (S'), early diastolic mitral annular velocity (E'), the ratio E/E', and TDI-derived myocardial performance index (TDI-MPI) were compared between two groups of children with normal or elevated plasma NT-proBNP concentrations. Of the children, 18.6% demonstrated tachycardia-induced cardiomyopathy (TIC). Compared with LVEF, the TDI-MPI and E/E' showed better correlations with elevated plasma NT-proBNP. Addition of TDI-MPI and E/E' to LVEF provided increased information to detect elevated plasma NT-proBNP (91.67% sensitivity). CONCLUSIONS TIC occurred in 18.6% of children with EAT. Initial LV dysfunction assessed by the TDI-MPI and E/E' is associated with elevated plasma NT-proBNP, even the LVEF is normal.
Collapse
Affiliation(s)
- Hai-Yan Ge
- Department of Pediatric Cardiology, Heart Center, the First Hospital of Tsinghua University, Medical Center, Tsinghua University, Beijing, 100016, China,
| | | | | | | | | | | |
Collapse
|
10
|
Song B, Wang BN, Chen DN, Luo ZG. Myocardial remodeling and bioelectric changes in tachycardia-induced heart failure in dogs. Braz J Med Biol Res 2014; 46:797-802. [PMID: 24036911 PMCID: PMC3854429 DOI: 10.1590/1414-431x20132694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/01/2013] [Indexed: 11/24/2022] Open
Abstract
In this study, electrical and structural remodeling of ventricles was examined in
tachycardia-induced heart failure (HF). We studied two groups of weight-matched
adult male mongrel dogs: a sham-operated control group (n=5) and a pacing group
(n=5) that underwent ventricular pacing at 230 bpm for 3 weeks. Clinical
symptoms of congestive HF were observed in both groups. Their hemodynamic
parameters were determined and the severity of the HF was evaluated by M-mode
echocardiography. Changes in heart morphology were observed by scanning electron
and light microscopy. Ventricular action potential duration (APD), as well as
the 50 and 90% APD were measured in both groups. All dogs exhibited clinical
symptoms of congestive HF after rapid right ventricular pacing for 3 weeks.
These data indicate that rapid, right ventricular pacing produces a useful
experimental model of low-output HF in dogs, characterized by biventricular pump
dysfunction, biventricular cardiac dilation, and non-ischemic impairment of left
ventricular contractility. Electrical and structural myocardial remodeling play
an essential role in congestive HF progression, and should thus be
prevented.
Collapse
|
11
|
Paslawska U, Noszczyk-Nowak A, Paslawski R, Janiszewski A, Kiczak L, Zysko D, Nicpon J, Jankowska EA, Szuba A, Ponikowski P. Normal electrocardiographic and echocardiographic (M-mode and two-dimensional) values in Polish Landrace pigs. Acta Vet Scand 2014; 56:54. [PMID: 25196530 PMCID: PMC4172945 DOI: 10.1186/s13028-014-0054-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 08/14/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Swine are recognized animal models of human cardiovascular diseases. Normal values of cardiac morphology and function have been published for swine but for smaller number of pigs and not for swine whose weights ranged up 100 kg. In order to improve the value of results of an investigation on cardiac morphology and function in swine when such data are extrapolated to humans, the aim of this study was to document electrocardiographic and echocardiographic measures of cardiac morphology and function in swine. The study comprised 170 single and repeated measurements that were made in 132 healthy domestic swine (Sus domesticus) whose weights ranged between 20-160 kg and were used as controls in three different experiments. All electrocardiographic and echocardiographic measurements in all swine were done under general anaesthesia. RESULTS Statistically significant correlations were found between body weight and heart rate (HR), the duration of the P-wave, the duration of the QRS interval, the duration of the QT interval, and the corrected QT ratio (QTc). Since body weight was positively correlated with age, statistically significant correlations were also found between age and HR, the duration of the P-wave, the duration of the QRS interval, the duration of the QT interval, and the QTc. We found that the thickness of the left ventricular wall and the internal diameter of the left ventricle increased with age and body weight. We also found positive trends between body weight and ejection fraction and body weight and fractional shortening. We also found a positive relationship between age, body weight, and the ratio of the left ventricular internal diameter to its wall thickness, as well as the relative left atrial size. CONCLUSION Many electro- and echocardiographic measures of cardiac morphology and function of healthy swine are related to their body weight. When the electro- and echocardiographic measures of domestic swine and humans are compared, the most comparable electrocardiographic values are those that were determined in swine whose body weights are not greater than 70 kg. In contrast, the most comparable echocardiographic measures are those that were determined in swine with a body weight of 40-110 kg.
Collapse
|
12
|
Kooij V, Venkatraman V, Tra J, Kirk JA, Rowell J, Blice-Baum A, Cammarato A, Van Eyk JE. Sizing up models of heart failure: Proteomics from flies to humans. Proteomics Clin Appl 2014; 8:653-64. [PMID: 24723306 PMCID: PMC4282793 DOI: 10.1002/prca.201300123] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/31/2014] [Accepted: 04/03/2014] [Indexed: 12/25/2022]
Abstract
Cardiovascular disease is the leading cause of death in the western world. Heart failure is a heterogeneous and complex syndrome, arising from various etiologies, which result in cellular phenotypes that vary from patient to patient. The ability to utilize genetic manipulation and biochemical experimentation in animal models has made them indispensable in the study of this chronic condition. Similarly, proteomics has been helpful for elucidating complicated cellular and molecular phenotypes and has the potential to identify circulating biomarkers and drug targets for therapeutic intervention. In this review, the use of human samples and animal model systems (pig, dog, rat, mouse, zebrafish, and fruit fly) in cardiac research is discussed. Additionally, the protein sequence homology between these species and the extent of conservation at the level of the phospho-proteome in major kinase signaling cascades involved in heart failure are investigated.
Collapse
Affiliation(s)
- Viola Kooij
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tomaszek A, Kiczak L, Bania J, Krupa P, Pasławska U, Zacharski M, Janiszewski A, Stefaniak T, Zyśko D, Ardehali H, Jankowska EA, Ponikowski P. Changes in parasympathetic system in medulla oblongata in male pigs in the course of tachycardia-induced cardiomyopathy. Auton Neurosci 2013; 177:253-9. [DOI: 10.1016/j.autneu.2013.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/30/2013] [Accepted: 05/20/2013] [Indexed: 01/14/2023]
|
14
|
Expression and complex formation of MMP9, MMP2, NGAL, and TIMP1 in porcine myocardium but not in skeletal muscles in male pigs with tachycardia-induced systolic heart failure. BIOMED RESEARCH INTERNATIONAL 2013; 2013:283856. [PMID: 23710440 PMCID: PMC3654659 DOI: 10.1155/2013/283856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are involved in the remodeling of extracellular matrix in various tissues. Their functioning could be related to the formation of complexes, containing MMP9, MMP2, tissue inhibitor of metalloproteinases type 1 (TIMP1), and neutrophil gelatinase-associated lipocalin (NGAL). Such complexes have not been investigated in either myocardial or skeletal muscles. We examined 20 male pigs with heart failure (HF), and 5 sham-operated animals. There were no differences in the mRNA expression of MMP9, MMP2, TIMP1, and NGAL between diseased and healthy animals, in either left ventricle (LV) myocardium or skeletal muscles. In LV from both diseased and healthy animals, in nonreducing and nondenaturing conditions, we demonstrated the presence of high molecular weight (HMW) complexes (130, 170, and 220 kDa) containing MMP9, TIMP1, and NGAL (also MMP2 in 220 kDa complex) without proteolytic activity, and a proteolytically active 115 kDa MMP9 form together with 72 and 68 kDa bands (proMMP2 and MMP2). Proteolytically active bands were also spontaneously released from HMW complexes. In skeletal muscles from both diseased and healthy animals, in nonreducing and nondenaturing conditions, we found no HMW complexes, and proteolytic activity was associated with the presence of 72 and 68 kDa bands (proMMP2 and MMP2).
Collapse
|
15
|
Klug D, Boule S, Wissocque L, Montaigne D, Marechal X, Hassoun SM, Neviere R. Right ventricular pacing with mechanical dyssynchrony causes apoptosis interruptus and calcium mishandling. Can J Cardiol 2012; 29:510-8. [PMID: 23062666 DOI: 10.1016/j.cjca.2012.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Mechanical dyssynchrony associated with rapid pacing induces cardiac cell stress and myocardial apoptotic pathway activation that has been implicated in the pathophysiology of left ventricular (LV) dysfunction. Effects of dyssynchrony per se are not fully understood. The objective of our study was to test whether ventricular dyssynchrony would elicit myocardial alterations in LV calcium handling regulation and cell survival or apoptosis signalling in right ventricular-paced swine. METHODS Implantation of pacemaker was performed under anaesthesia. Endocardial bipolar screw lead was inserted into the right jugular vein and positioned either in the right atrium or at the right ventricular (RV) apex. Swine were paced at 150 beats per minute for 3 weeks. RESULTS Compared with right atrial pacing, RV pacing led to abnormal LV sarcoplasmic reticulum calcium uptake (315 ± 65 vs 155 ± 55 nmol/min/mg, P < 0.05) and LV calcium-handling protein expression, ie, 35% reduction in ryanodine receptor 2, 25% decline in sarcoplasmic reticulum Ca(2+) ATPase, 70% increase in Na(+)/Ca(2+) exchanger, and 10% increase in phospholamban. RV pacing also elicited activation of LV apoptotic cascades without nuclear apoptosis. So-called interrupted apoptosis was the result of increased expression of X-linked inhibitor of apoptosis protein. Apoptosis and calcium mishandling were documented in absence of depressed heart function (ejection fraction 62 ± 8% vs 57 ± 12%, in right atrial- and RV-paced hearts, respectively, P > 0.05). CONCLUSIONS Slow rate RV pacing causes mechanical dyssynchrony and profound LV alterations in both apoptotic pathways and calcium handling in the early stages of pacing-induced cardiomyopathy.
Collapse
Affiliation(s)
- Didier Klug
- EA 4484, Département de Physiologie, Université Lille 2, Faculté de Médecine de Lille, Lille, France
| | | | | | | | | | | | | |
Collapse
|