1
|
Fischer S, Heubner L, May S, Amirkhiz PS, Kuhle J, Benkert P, Ziemssen T, Spieth P, Akgün K. Serum neurofilament light chain as a sensitive biomarker for neuromonitoring during extracorporeal membrane oxygenation. Sci Rep 2024; 14:20956. [PMID: 39251725 PMCID: PMC11384786 DOI: 10.1038/s41598-024-71603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
The use of extracorporeal membrane oxygenation (ECMO) has grown rapidly, driven by the COVID-19 pandemic. Despite its widespread adoption, neurological complications pose a significant risk, impacting both mortality and survivors' quality of life. Detecting these complications is challenging due to sedation and the heterogeneous nature of ECMO-associated neurological injury. Still, consensus of neurologic monitoring during ECMO is lacking since utilization and effectiveness of current neuromonitoring methods are limited. Especially in view of the heterogeneous nature of neurological injury during ECMO support an easily acquirable biomarker tracing neuronal damage independently from the underlying pathomechanism would be favorable. In a single-center prospective study on 34 severe acute respiratory distress syndrome (ARDS) patients undergoing ECMO, we explored the potential of serum neurofilament light chain levels (NfL) as a biomarker for neurological complications and its predictive power towards the overall outcome of ECMO patients. Individuals experiencing neurological complications (41%) demonstrated a notable rise in NfL levels (Tbaseline median 92.95 pg/ml; T24h median 132 pg/ml (IQR 88.6-924 pg/ml), p = 0.008; T7d median 248 pg/ml (IQR 157-1090 pg/ml), p = 0.001). Moreover, under ECMO therapy, these patients exhibited markedly elevated concentrations compared to those without neurological complications (T24h median 70.75 pg/ml (IQR 22.2-290 pg/ml), p = 0.023; T7d median 128 pg/ml (IQR 51.8-244 pg/ml), p = 0.002). There was no significant difference in the NfL dynamics between surviving patients and those who died during or shortly after ECMO therapy. While NfL indicates neuro-axonal damage during intensive care with ECMO therapy, we could not identify any correlation between survival outcome and the levels of NfL, indicating that NfL may not serve as a prognostic marker for survival. Nevertheless, additional studies involving a larger patient cohort are required.
Collapse
Affiliation(s)
- Stefanie Fischer
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Lars Heubner
- Department of Anesthesiology, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Stephanie May
- Department of Anesthesiology, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Puya Shalchi Amirkhiz
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Department of Clinical Research, Clinical Trial Unit, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Peter Spieth
- Department of Anesthesiology, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
2
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Nikolovski SS, Lazic AD, Fiser ZZ, Obradovic IA, Tijanic JZ, Raffay V. Recovery and Survival of Patients After Out-of-Hospital Cardiac Arrest: A Literature Review Showcasing the Big Picture of Intensive Care Unit-Related Factors. Cureus 2024; 16:e54827. [PMID: 38529434 PMCID: PMC10962929 DOI: 10.7759/cureus.54827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
As an important public health issue, out-of-hospital cardiac arrest (OHCA) requires several stages of high quality medical care, both on-field and after hospital admission. Post-cardiac arrest shock can lead to severe neurological injury, resulting in poor recovery outcome and increased risk of death. These characteristics make this condition one of the most important issues to deal with in post-OHCA patients hospitalized in intensive care units (ICUs). Also, the majority of initial post-resuscitation survivors have underlying coronary diseases making revascularization procedure another crucial step in early management of these patients. Besides keeping myocardial blood flow at a satisfactory level, other tissues must not be neglected as well, and maintaining mean arterial pressure within optimal range is also preferable. All these procedures can be simplified to a certain level along with using targeted temperature management methods in order to decrease metabolic demands in ICU-hospitalized post-OHCA patients. Additionally, withdrawal of life-sustaining therapy as a controversial ethical topic is under constant re-evaluation due to its possible influence on overall mortality rates in patients initially surviving OHCA. Focusing on all of these important points in process of managing ICU patients is an imperative towards better survival and complete recovery rates.
Collapse
Affiliation(s)
- Srdjan S Nikolovski
- Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola University Chicago Health Science Campus, Maywood, USA
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| | - Aleksandra D Lazic
- Emergency Center, Clinical Center of Vojvodina, Novi Sad, SRB
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| | - Zoran Z Fiser
- Emergency Medicine, Department of Emergency Medicine, Novi Sad, SRB
| | - Ivana A Obradovic
- Anesthesiology, Resuscitation, and Intensive Care, Sveti Vračevi Hospital, Bijeljina, BIH
| | - Jelena Z Tijanic
- Emergency Medicine, Municipal Institute of Emergency Medicine, Kragujevac, SRB
| | - Violetta Raffay
- School of Medicine, European University Cyprus, Nicosia, CYP
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| |
Collapse
|
4
|
Liang XZ, Feng SY. Serum neurofilament light chain for predicting delayed neurological sequelae after acute carbon monoxide poisoning. Acta Neurol Belg 2024; 124:73-79. [PMID: 37468802 DOI: 10.1007/s13760-023-02334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Acute carbon monoxide (CO) poisoning survivors may experience persistent delayed neurological sequelae (DNS). No studies have investigated the serum neurofilament light chain (NFL) as a prognostic biomarker in acute CO poisoning. This study aimed to determine the serum NFL levels to predict the DNS after acute CO poisoning. METHODS Patients with acute CO poisoning who were consecutively admitted from October 2020 to September 2022 were included. The predictive performance of NFLs for the DNS was assessed through the analyses of the correlation, the logistic regression, and the receiver operating characteristic (ROC) curve. RESULTS Overall, 9.7% (15/155) of the patients had DNS. The serum NFLs in patients with DNS was 113.7 pg/mL, which is significantly higher than that in the non-DNS group (25.8 pg/mL; P < 0.001). Correlation analysis shows that the serum NFLs are positively correlated with DNS (r = 0.567, P < 0.001). After multiple adjustments, the serum NFLs are independently correlated with DNS [adjusted odds ratio 1.032; 95% confidence interval (CI) 1.001, 1.064; p = 0.043]. The ROC curve indicates an area under the curve (AUC) of 0.923 (95% CI 0.869, 0.960), with a sensitivity of 100% and a specificity of 84.3% at the best cutoff value of 73.4 pg/mL. Pairwise comparison shows that the AUC of the NFL is significantly higher than that of the neuron specific enolase (AUC = 0.779) using the Hanley and McNeil test (Z = 2.283, p = 0.022). CONCLUSION Serum NFL could be a biomarker of the DNS after acute CO poisoning.
Collapse
Affiliation(s)
- Xue Zheng Liang
- Emergency Department, Cangzhou Central Hospital, No. 16 Xinhua Road, Yunhe Qu, Cangzhou City, 061000, China
| | - Shun Yi Feng
- Emergency Department, Cangzhou Central Hospital, No. 16 Xinhua Road, Yunhe Qu, Cangzhou City, 061000, China.
| |
Collapse
|
5
|
Klitholm M, Jeppesen AN, Christensen S, Parkner T, Tybirk L, Kirkegaard H, Sandfeld-Paulsen B, Grejs AM. Neurofilament Light Chain and Glial Fibrillary Acidic Protein as early prognostic biomarkers after out-of-hospital cardiac arrest. Resuscitation 2023; 193:109983. [PMID: 37778613 DOI: 10.1016/j.resuscitation.2023.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
AIMS Neurofilament Light Chain (NfL) and Glial Fibrillary Acidic Protein (GFAP) are proteins released into the bloodstream upon hypoxic brain injury. We evaluated the biokinetics and examined the prognostic performance of serum NfL and GFAP in comatose out-of-hospital cardiac arrest (OHCA) patients. Furthermore, we compared the prognostic performance to that of serum Neuron Specific Enolase (NSE). METHODS This is a sub-study of the "Targeted temperature management for 48 vs 24 hours" (NCT01689077) trial. NfL and GFAP serum values from 82 patients were examined in blood samples collected at 24, 48 and 72 hours (h) after reaching target temperature of 33 ± 1 °C. This temperature was reached within a median of 281-320 minutes after intensive care unit admission. GFAP was analysed at 48 and 72 h. The neuroprognostic performance of NfL and GFAP was evaluated after 6 months follow-up. RESULTS NfL and GFAP values were significantly higher in patients with a poor outcome (Cerebral Performance Category (CPC) score 3-5) vs. good outcome (CPC 1-2). NfL 24 h: 1371.5 (462.0; 2125.1) vs. 24.8 (14.0; 61.6). GFAP 48 h: 1285.3 (843.9; 2236.7) vs. 361.2 (200.4; 665.6) (both p < 0.001). Both biomarkers were promising markers of poor functional outcome at 24 and 48 h respectively: NfL 24 h: AUROC 0.95 (95% CI: 0.91-1.00). GFAP 48 h: AUROC 0.88 (95% CI: 0.81-0.96). NfL and GFAP both predicted outcome better than NSE at 48 h (both p < 0.01). At 72 h NfL but not GFAP outperformed NSE (p = 0.01). CONCLUSION Serum NfL and GFAP may be strong biomarkers of poor functional outcome after OHCA from an early timepoint.
Collapse
Affiliation(s)
- Maibritt Klitholm
- Department of Intensive Care Medicine, Aarhus University Hospital, Denmark.
| | - Anni Nørgaard Jeppesen
- Department of Cardiothoracic and Vascular Surgery, Anaesthesia Section, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Steffen Christensen
- Department of Intensive Care Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| | - Tina Parkner
- Department of Clinical Medicine, Aarhus University, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| | - Lea Tybirk
- Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
| | - Hans Kirkegaard
- Department of Clinical Medicine, Aarhus University, Denmark; Research Centre for Emergency Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Birgitte Sandfeld-Paulsen
- Department of Clinical Medicine, Aarhus University, Denmark; Department of Clinical Biochemistry, Viborg Regional Hospital, Heibergs Alle 4, 8800 Viborg, Denmark
| | - Anders Morten Grejs
- Department of Intensive Care Medicine, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
6
|
Wang SL, Li N, Feng SY, Li Y. Serum neurofilament light chain as a predictive marker of neurologic outcome after cardiac arrest: a meta-analysis. BMC Cardiovasc Disord 2023; 23:193. [PMID: 37061702 PMCID: PMC10105388 DOI: 10.1186/s12872-023-03220-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023] Open
Abstract
OBJECTIVE Recently, an increasing number of studies have suggested using serum neurofilament light (NfL) chain to predict the neurologic outcome after cardiac arrest. However, the predictive ability of this approach remains inconclusive. Meta-analysis was performed on related studies to assess the ability of serum NfL to predict the neurologic outcome after cardiac arrest. MATERIALS AND METHODS PubMed, ScienceDirect and Embase were systematically searched from the date of their inception until June 2022. Data were extracted to calculate the area under the receiver operating characteristic curve (AUC), the sensitivity, the specificity and the publication bias to evaluate the predictive power of serum NfL using Stata 14.0. RESULTS Nine studies were included in the present meta-analysis. Seven studies involving 1296 participants reported serum NfL 24 h post arrest for predicting the neurological outcome, and the AUC was 0.92 (77% sensitivity and 96% specificity). Seven studies involving 1020 participants reported serum NfL 48 h post arrest for predicting the neurological outcome, and the AUC was 0.94 (78% sensitivity and 98% specificity). Four studies involving 804 participants reported serum NfL 72 h post arrest for predicting the neurological outcome, and the AUC was 0.96 (90% sensitivity and 98% specificity). No significant publication bias was observed among the included studies. CONCLUSION The present meta-analysis results support the potential use of serum NfL as an early biomarker of neurologic outcome, especially 72 h post arrest.
Collapse
Affiliation(s)
- Shu Li Wang
- Emergency Deparment, Cangzhou Central Hospital, No.16 Xinhua Road, Yunhe Qu, Cangzhou City, 061000, China
| | - Nan Li
- Emergency Deparment, Cangzhou Central Hospital, No.16 Xinhua Road, Yunhe Qu, Cangzhou City, 061000, China
| | - Shun Yi Feng
- Emergency Deparment, Cangzhou Central Hospital, No.16 Xinhua Road, Yunhe Qu, Cangzhou City, 061000, China
| | - Yong Li
- Emergency Deparment, Cangzhou Central Hospital, No.16 Xinhua Road, Yunhe Qu, Cangzhou City, 061000, China.
| |
Collapse
|
7
|
Levin H, Lybeck A, Frigyesi A, Arctaedius I, Thorgeirsdóttir B, Annborn M, Moseby-Knappe M, Nielsen N, Cronberg T, Ashton NJ, Zetterberg H, Blennow K, Friberg H, Mattsson-Carlgren N. Plasma neurofilament light is a predictor of neurological outcome 12 h after cardiac arrest. Crit Care 2023; 27:74. [PMID: 36829239 PMCID: PMC9960417 DOI: 10.1186/s13054-023-04355-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/12/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Previous studies have reported high prognostic accuracy of circulating neurofilament light (NfL) at 24-72 h after out-of-hospital cardiac arrest (OHCA), but performance at earlier time points and after in-hospital cardiac arrest (IHCA) is less investigated. We aimed to assess plasma NfL during the first 48 h after OHCA and IHCA to predict long-term outcomes. METHODS Observational multicentre cohort study in adults admitted to intensive care after cardiac arrest. NfL was retrospectively analysed in plasma collected on admission to intensive care, 12 and 48 h after cardiac arrest. The outcome was assessed at two to six months using the Cerebral Performance Category (CPC) scale, where CPC 1-2 was considered a good outcome and CPC 3-5 a poor outcome. Predictive performance was measured with the area under the receiver operating characteristic curve (AUROC). RESULTS Of 428 patients, 328 (77%) suffered OHCA and 100 (23%) IHCA. Poor outcome was found in 68% of OHCA and 55% of IHCA patients. The overall prognostic performance of NfL was excellent at 12 and 48 h after OHCA, with AUROCs of 0.93 and 0.97, respectively. The predictive ability was lower after IHCA than OHCA at 12 and 48 h, with AUROCs of 0.81 and 0.86 (p ≤ 0.03). AUROCs on admission were 0.77 and 0.67 after OHCA and IHCA, respectively. At 12 and 48 h after OHCA, high NfL levels predicted poor outcome at 95% specificity with 70 and 89% sensitivity, while low NfL levels predicted good outcome at 95% sensitivity with 71 and 74% specificity and negative predictive values of 86 and 88%. CONCLUSIONS The prognostic accuracy of NfL for predicting good and poor outcomes is excellent as early as 12 h after OHCA. NfL is less reliable for the prediction of outcome after IHCA.
Collapse
Affiliation(s)
- Helena Levin
- Anesthesia & Intensive Care, Department of Clinical Sciences, Lund University, Lund, Sweden. .,Department of Research & Education, Skane University Hospital, Lund, Sweden.
| | - Anna Lybeck
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Skane University Hospital, Lund University, Lund, Sweden
| | - Attila Frigyesi
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Skane University Hospital, Lund University, Lund, Sweden
| | - Isabelle Arctaedius
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Skane University Hospital, Lund University, Lund, Sweden
| | - Bergthóra Thorgeirsdóttir
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Skane University Hospital, Lund University, Malmö, Sweden
| | - Martin Annborn
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Helsingborg Hospital, Lund University, Helsingborg, Sweden
| | - Marion Moseby-Knappe
- grid.4514.40000 0001 0930 2361Neurology, Department of Clinical Sciences Lund, Skane University Hospital, Lund University, Lund, Sweden
| | - Niklas Nielsen
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Helsingborg Hospital, Lund University, Helsingborg, Sweden
| | - Tobias Cronberg
- grid.4514.40000 0001 0930 2361Neurology, Department of Clinical Sciences Lund, Skane University Hospital, Lund University, Lund, Sweden
| | - Nicholas J. Ashton
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.454378.9NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK ,grid.412835.90000 0004 0627 2891Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway ,grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden ,grid.83440.3b0000000121901201Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK ,grid.83440.3b0000000121901201UK Dementia Research Institute at UCL, London, UK ,grid.24515.370000 0004 1937 1450Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Hans Friberg
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Skane University Hospital, Lund University, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- grid.4514.40000 0001 0930 2361Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden ,grid.411843.b0000 0004 0623 9987Department of Neurology, Skane University Hospital, Lund, Sweden ,grid.4514.40000 0001 0930 2361Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Abu-Rumeileh S, Abdelhak A, Foschi M, D'Anna L, Russo M, Steinacker P, Kuhle J, Tumani H, Blennow K, Otto M. The multifaceted role of neurofilament light chain protein in non-primary neurological diseases. Brain 2023; 146:421-437. [PMID: 36083979 PMCID: PMC9494370 DOI: 10.1093/brain/awac328] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The advancing validation and exploitation of CSF and blood neurofilament light chain protein as a biomarker of neuroaxonal damage has deeply changed the current diagnostic and prognostic approach to neurological diseases. Further, recent studies have provided evidence of potential new applications of this biomarker also in non-primary neurological diseases. In the present review we summarize the state of the art, future perspectives, but also limitations, of neurofilament light chain protein as a CSF and blood biomarker in several medical fields, including intensive care medicine, surgery, internal medicine and psychiatry. In particular, neurofilament light chain protein is associated with the degree of neurological impairment and outcome in patients admitted to intensive care units or in the perioperative phase and it seems to be highly interconnected with cardiovascular risk factors. Beyond that, interesting diagnostic and prognostic insights have been provided by the investigation of neurofilament light chain protein in psychiatric disorders as well as in the current coronavirus disease-19 pandemic and in normal ageing. Altogether, current data outline a multifaceted applicability of CSF and blood neurofilament light chain protein ranging from the critical clinical setting to the development of precision medicine models suggesting a strict interplay between the nervous system pathophysiology and the health-illness continuum.
Collapse
Affiliation(s)
- Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Abdelhak
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Matteo Foschi
- Department of Neuroscience, Neurology Unit – S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna, Italy
| | - Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London, NHS Healthcare Trust, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Michele Russo
- Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, Conegliano, Italy
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
9
|
Sustained Increase in Serum Glial Fibrillary Acidic Protein after First ST-Elevation Myocardial Infarction. Int J Mol Sci 2022; 23:ijms231810304. [PMID: 36142218 PMCID: PMC9499398 DOI: 10.3390/ijms231810304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Acute ischemic cardiac injury predisposes one to cognitive impairment, dementia, and depression. Pathophysiologically, recent positron emission tomography data suggest astroglial activation after experimental myocardial infarction (MI). We analyzed peripheral surrogate markers of glial (and neuronal) damage serially within 12 months after the first ST-elevation MI (STEMI). Serum levels of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were quantified using ultra-sensitive molecular immunoassays. Sufficient biomaterial was available from 45 STEMI patients (aged 28 to 78 years, median 56 years, 11% female). The median (quartiles) of GFAP was 63.8 (47.0, 89.9) pg/mL and of NfL 10.6 (7.2, 14.8) pg/mL at study entry 0–4 days after STEMI. GFAP after STEMI increased in the first 3 months, with a median change of +7.8 (0.4, 19.4) pg/mL (p = 0.007). It remained elevated without further relevant increases after 6 months (+11.7 (0.6, 23.5) pg/mL; p = 0.015), and 12 months (+10.3 (1.5, 22.7) pg/mL; p = 0.010) compared to the baseline. Larger relative infarction size was associated with a higher increase in GFAP (ρ = 0.41; p = 0.009). In contrast, NfL remained unaltered in the course of one year. Our findings support the idea of central nervous system involvement after MI, with GFAP as a potential peripheral biomarker of chronic glial damage as one pathophysiologic pathway.
Collapse
|
10
|
Smeele PJ, Vermunt L, Blok S, Duitman JW, van Agtmael M, Algera AG, Appelman B, van Baarle F, Bax D, Beudel M, Bogaard HJ, Bomers M, Bonta P, Bos L, Botta M, de Brabander J, de Bree G, de Bruin S, Buis DTP, Bugiani M, Bulle E, Chekrouni N, Chouchane O, Cloherty A, Dijkstra M, Dongelmans DA, Duijvelaar E, Dujardin RWG, Elbers P, Fleuren L, Geerlings S, Geijtenbeek T, Girbes A, Goorhuis B, Grobusch MP, Hafkamp F, Hagens L, Hamann J, Harris V, Hemke R, Hermans SM, Heunks L, Hollmann M, Horn J, Hovius JW, de Jong MD, Koning R, Lim EHT, van Mourik N, Nellen J, Nossent EJ, Olie S, Paulus F, Peters E, Pina-Fuentes DAI, van der Poll T, Preckel B, Raasveld J, Reijnders T, de Rotte MCFJ, Schippers JR, Schinkel M, Schultz MJ, Schrauwen FAP, Schuurman A, Schuurmans J, Sigaloff K, Slim MA, Smeele P, Smit M, Stijnis CS, Stilma W, Teunissen C, Thoral P, Tsonas AM, Tuinman PR, van der Valk M, Veelo D, Volleman C, de Vries H, Vught LA, van Vugt M, Wouters D, Zwinderman AH(K, Brouwer MC, Wiersinga WJ, Vlaar APJ, van de Beek D, Nossent EJ, van Agtmael MA, Heunks LMA, Horn J, Bogaard HJ, Teunissen CE. Neurofilament light increases over time in severe COVID-19 and is associated with delirium. Brain Commun 2022; 4:fcac195. [PMID: 35938070 PMCID: PMC9351727 DOI: 10.1093/braincomms/fcac195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological monitoring in sedated Intensive Care Unit patients is constrained by the lack of reliable blood-based biomarkers. Neurofilament light is a cross-disease biomarker for neuronal damage with potential clinical applicability for monitoring Intensive Care Unit patients. We studied the trajectory of neurofilament light over a month in Intensive Care Unit patients diagnosed with severe COVID-19 and explored its relation to clinical outcomes and pathophysiological predictors. Data were collected over a month in 31 Intensive Care Unit patients (166 plasma samples) diagnosed with severe COVID-19 at Amsterdam University Medical Centre, and in the first week after emergency department admission in 297 patients with COVID-19 (635 plasma samples) admitted to Massachusetts General hospital. We observed that Neurofilament light increased in a non-linear fashion in the first month of Intensive Care Unit admission and increases faster in the first week of Intensive Care Unit admission when compared with mild-moderate COVID-19 cases. We observed that baseline Neurofilament light did not predict mortality when corrected for age and renal function. Peak neurofilament light levels were associated with a longer duration of delirium after extubation in Intensive Care Unit patients. Disease severity, as measured by the sequential organ failure score, was associated to higher neurofilament light values, and tumour necrosis factor alpha levels at baseline were associated with higher levels of neurofilament light at baseline and a faster increase during admission. These data illustrate the dynamics of Neurofilament light in a critical care setting and show associations to delirium, disease severity and markers for inflammation. Our study contributes to determine the clinical utility and interpretation of neurofilament light levels in Intensive Care Unit patients.
Collapse
Affiliation(s)
- Patrick J Smeele
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC , Amsterdam , the Netherlands
- Department of Pulmonary Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC , Amsterdam , the Netherlands
| | - Siebe Blok
- Department of Pulmonary Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Jan Willem Duitman
- Department of Pulmonary Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Esther J Nossent
- Department of Pulmonary Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Michiel A van Agtmael
- Department of Internal Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Leo M A Heunks
- Department of Intensive Care Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Janneke Horn
- Department of Intensive Care Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Centre , Amsterdam 1081 HV , the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC , Amsterdam , the Netherlands
| | | |
Collapse
|
11
|
Humaloja J, Ashton NJ, Skrifvars MB. Brain Injury Biomarkers for Predicting Outcome After Cardiac Arrest. Crit Care 2022; 26:81. [PMID: 35337359 DOI: 10.1186/s13054-022-03913-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2022. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2022 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .
Collapse
Affiliation(s)
- Jaana Humaloja
- Department of Emergency Care and Services, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Markus B Skrifvars
- Department of Emergency Care and Services, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
13
|
Mayasi Y, Geocadin RG. Updates on the Management of Neurologic Complications of Post-Cardiac Arrest Resuscitation. Semin Neurol 2021; 41:388-397. [PMID: 34412143 DOI: 10.1055/s-0041-1731310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sudden cardiac arrest (SCA) is one of the leading causes of mortality and morbidity in the United States, and survivors are frequently left with severe disability. Of the 10% successfully resuscitated from SCA, only around 10% of these live with a favorable neurologic outcome. Survivors of SCA commonly develop post-cardiac arrest syndrome (PCAS). PCAS is composed of neurologic, myocardial, and systemic injury related to inadequate perfusion and ischemia-reperfusion injury with free radical formation and an inflammatory cascade. While targeted temperature management is the cornerstone of therapy, other intensive care unit-based management strategies include monitoring and treatment of seizures, cerebral edema, and increased intracranial pressure, as well as prevention of further neurologic injury. In this review, we discuss the scientific evidence, recent updates, future prospects, and knowledge gaps in the treatment of post-cardiac arrest patients.
Collapse
Affiliation(s)
- Yunis Mayasi
- Division of NeuroCritical Care, Avera McKennan Hospital and University Health Center, Sioux Falls, South Dakota-University of South Dakota Medical School, Sioux Falls, South Dakota
| | - Romergryko G Geocadin
- Division of Neurosciences Critical Care, Neurology, Neurosurgery and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Adler C, Onur OA, Braumann S, Gramespacher H, Bittner S, Falk S, Fink GR, Baldus S, Warnke C. Absolute serum neurofilament light chain levels and its early kinetics predict brain injury after out-of-hospital cardiac arrest. J Neurol 2021; 269:1530-1537. [PMID: 34328545 PMCID: PMC8857108 DOI: 10.1007/s00415-021-10722-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
Objectives To test if the early kinetics of neurofilament light (NFL) in blood adds to the absolute values of NFL in the prediction of outcome, and to evaluate if NFL can discriminate individuals with severe hypoxic–ischemic brain injury (sHIBI) from those with other causes of poor outcome after out-of-hospital cardiac arrest (OHCA). Design and setting Monocentric retrospective study involving individuals following non-traumatic OHCA between April 2014 and April 2016. NFL concentrations were determined on a SiMoA HD-1 device using NF-Light Advantage Kits. Participants Of 73 patients screened, 53 had serum samples available for NFL measurement at three timepoints (after 3, 24, and 48 h of admission). Of these 53 individuals, 43.4% had poor neurologic outcome at discharge as assessed by Glasgow–Pittsburgh cerebral performance categories, and, according to a current prognostication algorithm, poor outcome due to sHIBI in 20.7%. Main outcome measure Blood NFL and its early kinetics for prognostication of outcome and prediction of sHIBI after OHCA. Results An absolute NFL > 508.6 pg/ml 48 h after admission, or a change in NFL > 494 pg/ml compared with an early baseline value predicted outcome, and discriminated severe sHIBI from other causes of unfavorable outcome after OHCA with high sensitivity (100%, 95%CI 70.0–100%) and specificity (91.7%, 95%CI 62.5–100%). Conclusions Not only absolute values of NFL, but also early changes in NFL predict the outcome following OHCA, and may differentiate sHIBI from other causes of poor outcome after OHCA with high sensitivity and specificity. Our study adds to published data, overall corroborating that NFL measured in blood should be implemented in prognostication algorithms used in clinical routine.
Collapse
Affiliation(s)
- Christoph Adler
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology and Intensive Care, University of Cologne, 50937, Cologne, Germany.,Fire Department City of Cologne, Institute for Security Science and Rescue Technology, Cologne, Germany
| | - Oezguer A Onur
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Simon Braumann
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology and Intensive Care, University of Cologne, 50937, Cologne, Germany
| | - Hannes Gramespacher
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Steffen Falk
- Department of Neurology, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Stephan Baldus
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology and Intensive Care, University of Cologne, 50937, Cologne, Germany
| | - Clemens Warnke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| |
Collapse
|
15
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. Postreanimationsbehandlung. Notf Rett Med 2021. [DOI: 10.1007/s10049-021-00892-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Kim YM, Jeung KW, Kim WY, Park YS, Oh JS, You YH, Lee DH, Chae MK, Jeong YJ, Kim MC, Ha EJ, Hwang KJ, Kim WS, Lee JM, Cha KC, Chung SP, Park JD, Kim HS, Lee MJ, Na SH, Kim ARE, Hwang SO. 2020 Korean Guidelines for Cardiopulmonary Resuscitation. Part 5. Post-cardiac arrest care. Clin Exp Emerg Med 2021; 8:S41-S64. [PMID: 34034449 PMCID: PMC8171174 DOI: 10.15441/ceem.21.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Young-Min Kim
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Kyung Woon Jeung
- Department of Emergency Medicine, Chonnam National University College of Medicine, Gwangju, Korea
| | - Won Young Kim
- Department of Emergency Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Yoo Seok Park
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Suk Oh
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Yeon Ho You
- Department of Emergency Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Dong Hoon Lee
- Department of Emergency Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Minjung Kathy Chae
- Department of Emergency Medicine, Ajou University College of Medicine, Suwon, Korea
| | - Yoo Jin Jeong
- Department of Emergency Medicine, Chonnam National University College of Medicine, Gwangju, Korea
| | - Min Chul Kim
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Korea
| | - Eun Jin Ha
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Jin Hwang
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jae Myung Lee
- Department of General Surgery, Korea University College of Medicine, Seoul, Korea
| | - Kyoung-Chul Cha
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sung Phil Chung
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - June Dong Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Suk Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Mi Jin Lee
- Department of Emergency Medicine, Kyoungbook University College of Medicine, Daegu, Korea
| | - Sang-Hoon Na
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ai-Rhan Ellen Kim
- Department of Pediatrics, Ulsan University College of Medicine, Seoul, Korea
| | - Sung Oh Hwang
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - on behalf of the Steering Committee of 2020 Korean Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Chonnam National University College of Medicine, Gwangju, Korea
- Department of Emergency Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Emergency Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Ajou University College of Medicine, Suwon, Korea
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of General Surgery, Korea University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Kyoungbook University College of Medicine, Daegu, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Ulsan University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 2021; 47:369-421. [PMID: 33765189 PMCID: PMC7993077 DOI: 10.1007/s00134-021-06368-4] [Citation(s) in RCA: 477] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation and organ donation.
Collapse
Affiliation(s)
- Jerry P. Nolan
- University of Warwick, Warwick Medical School, Coventry, CV4 7AL UK
- Royal United Hospital, Bath, BA1 3NG UK
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W. Böttiger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
- Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Division of Health Sciences, Warwick Medical School, University of Warwick, Room A108, Coventry, CV4 7AL UK
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Véronique R. M. Moulaert
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Markus B. Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol, BS10 5NB UK
| |
Collapse
|
18
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Mariero Olasveengen T, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation 2021; 161:220-269. [PMID: 33773827 DOI: 10.1016/j.resuscitation.2021.02.012] [Citation(s) in RCA: 389] [Impact Index Per Article: 129.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation, and organ donation.
Collapse
Affiliation(s)
- Jerry P Nolan
- University of Warwick, Warwick Medical School, Coventry CV4 7AL, UK; Royal United Hospital, Bath, BA1 3NG, UK.
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy; Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W Böttiger
- University Hospital of Cologne, Kerpener Straße 62, D-50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC) Université Catholique de Louvain, Brussels, Belgium; Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Room A108, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Gisela Lilja
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | - Véronique R M Moulaert
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK
| |
Collapse
|
19
|
Hunziker S, Quinto A, Ramin-Wright M, Becker C, Beck K, Vincent A, Tisljar K, Disanto G, Benkert P, Leppert D, Pargger H, Marsch S, Raoul Sutter, Peters N, Kuhle J. Serum neurofilament measurement improves clinical risk scores for outcome prediction after cardiac arrest: results of a prospective study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:32. [PMID: 33472689 PMCID: PMC7819224 DOI: 10.1186/s13054-021-03459-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Background A recent study found serum neurofilament light chain (NfL) levels to be strongly associated with poor neurological outcome in patients after cardiac arrest. Our aim was to confirm these findings in an independent validation study and to investigate whether NfL improves the prognostic value of two cardiac arrest-specific risk scores. Methods This prospective, single-center study included 164 consecutive adult after out-of-hospital cardiac arrest (OHCA) patients upon intensive care unit admission. We calculated two clinical risk scores (OHCA, CAHP) and measured NfL on admission within the first 24 h using the single molecule array NF-light® assay. The primary endpoint was neurological outcome at hospital discharge assessed with the cerebral performance category (CPC) score. Results Poor neurological outcome (CPC > 3) was found in 60% (98/164) of patients, with 55% (91/164) dying within 30 days of hospitalization. Compared to patients with favorable outcome, NfL was 14-times higher in patients with poor neurological outcome (685 ± 1787 vs. 49 ± 111 pg/mL), with an adjusted odds ratio of 3.4 (95% CI 2.1 to 5.6, p < 0.001) and an area under the curve (AUC) of 0.82. Adding NfL to the clinical risk scores significantly improved discrimination of both the OHCA score (from AUC 0.82 to 0.89, p < 0.001) and CAHP score (from AUC 0.89 to 0.92, p < 0.05). Adding NfL to both scores also resulted in significant improvement in reclassification statistics with a Net Reclassification Index (NRI) of 0.58 (p < 0.001) for OHCA and 0.83 (p < 0.001) for CAHP. Conclusions Admission NfL was a strong outcome predictor and significantly improved two clinical risk scores regarding prognostication of neurological outcome in patients after cardiac arrest. When confirmed in future outcome studies, admission NfL should be considered as a standard laboratory measures in the evaluation of OHCA patients.
Collapse
Affiliation(s)
- Sabina Hunziker
- Intensive Care Unit, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland. .,Medical Faculty, University of Basel, Klingelbergstrasse 61, 4056, Basel, Switzerland.
| | - Adrian Quinto
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland
| | - Maja Ramin-Wright
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland
| | - Christoph Becker
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland
| | - Katharina Beck
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland
| | - Alessia Vincent
- Medical Communication and Psychosomatic Medicine, University Hospital Basel, Klingelbergstrasse 23, 4031, Basel, Switzerland
| | - Kai Tisljar
- Intensive Care Unit, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Giulio Disanto
- Medical Faculty, University of Basel, Klingelbergstrasse 61, 4056, Basel, Switzerland.,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Clinical Trial Unit Basel, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Medical Faculty, University of Basel, Klingelbergstrasse 61, 4056, Basel, Switzerland.,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Hans Pargger
- Intensive Care Unit, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Medical Faculty, University of Basel, Klingelbergstrasse 61, 4056, Basel, Switzerland
| | - Stephan Marsch
- Intensive Care Unit, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Medical Faculty, University of Basel, Klingelbergstrasse 61, 4056, Basel, Switzerland
| | - Raoul Sutter
- Intensive Care Unit, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Division of Clinical Neurophysiology, Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.,Medical Faculty, University of Basel, Klingelbergstrasse 61, 4056, Basel, Switzerland
| | - Nils Peters
- Medical Faculty, University of Basel, Klingelbergstrasse 61, 4056, Basel, Switzerland.,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Medical Faculty, University of Basel, Klingelbergstrasse 61, 4056, Basel, Switzerland.,Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Neurofilament to predict post-anoxic neurological outcome: are we ready for the prime time? Intensive Care Med 2020; 47:77-79. [PMID: 33169216 DOI: 10.1007/s00134-020-06309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
|
21
|
Soar J, Berg KM, Andersen LW, Böttiger BW, Cacciola S, Callaway CW, Couper K, Cronberg T, D'Arrigo S, Deakin CD, Donnino MW, Drennan IR, Granfeldt A, Hoedemaekers CWE, Holmberg MJ, Hsu CH, Kamps M, Musiol S, Nation KJ, Neumar RW, Nicholson T, O'Neil BJ, Otto Q, de Paiva EF, Parr MJA, Reynolds JC, Sandroni C, Scholefield BR, Skrifvars MB, Wang TL, Wetsch WA, Yeung J, Morley PT, Morrison LJ, Welsford M, Hazinski MF, Nolan JP. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2020; 156:A80-A119. [PMID: 33099419 PMCID: PMC7576326 DOI: 10.1016/j.resuscitation.2020.09.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations for advanced life support includes updates on multiple advanced life support topics addressed with 3 different types of reviews. Topics were prioritized on the basis of both recent interest within the resuscitation community and the amount of new evidence available since any previous review. Systematic reviews addressed higher-priority topics, and included double-sequential defibrillation, intravenous versus intraosseous route for drug administration during cardiac arrest, point-of-care echocardiography for intra-arrest prognostication, cardiac arrest caused by pulmonary embolism, postresuscitation oxygenation and ventilation, prophylactic antibiotics after resuscitation, postresuscitation seizure prophylaxis and treatment, and neuroprognostication. New or updated treatment recommendations on these topics are presented. Scoping reviews were conducted for anticipatory charging and monitoring of physiological parameters during cardiopulmonary resuscitation. Topics for which systematic reviews and new Consensuses on Science With Treatment Recommendations were completed since 2015 are also summarized here. All remaining topics reviewed were addressed with evidence updates to identify any new evidence and to help determine which topics should be the highest priority for systematic reviews in the next 1 to 2 years.
Collapse
|
22
|
Lybeck A, Friberg H, Nielsen N, Rundgren M, Ullén S, Zetterberg H, Blennow K, Cronberg T, Westhall E. Postanoxic electrographic status epilepticus and serum biomarkers of brain injury. Resuscitation 2020; 158:253-257. [PMID: 33127439 DOI: 10.1016/j.resuscitation.2020.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/18/2020] [Indexed: 01/21/2023]
Abstract
AIM To explore if electrographic status epilepticus (ESE) after cardiac arrest causes additional secondary brain injury reflected by serum levels of two novel biomarkers of brain injury: neurofilament light chain (NfL) originating from neurons and glial fibrillary acidic protein (GFAP) from glial cells. METHODS Simplified continuous EEG (cEEG) and serum levels of NfL and GFAP, sampled at 24, 48 and 72 h after cardiac arrest, were collected during the Target Temperature Management (TTM)-trial. Two statistical methods were used: multivariable regresssion analysis; and a matched control group of patients without ESE matched for early predictors of poor neurological outcome. RESULTS 128 patients had available biomarkers and cEEG. Twenty-six (20%) patients developed ESE, the majority (69%) within 24 h. ESE was an independent predictor of elevated serum NfL (p < 0.001) but not of serum GFAP (p = 0.16) at 72 h after cardiac arrest. Compared to a control group matched for early predictors of poor neurological outcome, patients who developed ESE had higher levels of serum NfL (p = 0.03) and GFAP (p = 0.04) at 72 h after cardiac arrest. CONCLUSION ESE after cardiac arrest is associated with higher levels of serum NfL which may suggest increased secondary neuronal injury compared to matched patients without ESE but similar initial brain injury. Associations with GFAP reflecting glial injury are less clear. The study design cannot exclude imperfect matching or other mechanisms of secondary brain injury contributing to the higher levels of biomarkers of brain injury seen in the patients with ESE.
Collapse
Affiliation(s)
- Anna Lybeck
- Lund University, Skane University Hospital, Department of Clinical Sciences, Anesthesia & Intensive Care, 221 85 Lund, Sweden.
| | - Hans Friberg
- Lund University, Skane University Hospital, Department of Clinical Sciences, Anesthesia & Intensive Care, 221 85 Lund, Sweden.
| | - Niklas Nielsen
- Lund University, Helsingborg Hospital, Department of Clinical Sciences, Anesthesia & Intensive Care, 221 85 Lund, Sweden.
| | - Malin Rundgren
- Lund University, Skane University Hospital, Department of Clinical Sciences, Anesthesia & Intensive Care, 221 85 Lund, Sweden.
| | - Susann Ullén
- Clinical Studies Sweden - Forum South, Skane University Hospital, 221 85 Lund, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 214 28 Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK.
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 214 28 Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden.
| | - Tobias Cronberg
- Lund University, Skane University Hospital, Department of Clinical Sciences, Neurology, 221 85 Lund, Sweden.
| | - Erik Westhall
- Lund University, Skane University Hospital, Department of Clinical Sciences, Clinical Neurophysiology, 221 85 Lund, Sweden.
| |
Collapse
|
23
|
Berg KM, Soar J, Andersen LW, Böttiger BW, Cacciola S, Callaway CW, Couper K, Cronberg T, D’Arrigo S, Deakin CD, Donnino MW, Drennan IR, Granfeldt A, Hoedemaekers CW, Holmberg MJ, Hsu CH, Kamps M, Musiol S, Nation KJ, Neumar RW, Nicholson T, O’Neil BJ, Otto Q, de Paiva EF, Parr MJ, Reynolds JC, Sandroni C, Scholefield BR, Skrifvars MB, Wang TL, Wetsch WA, Yeung J, Morley PT, Morrison LJ, Welsford M, Hazinski MF, Nolan JP, Issa M, Kleinman ME, Ristagno G, Arafeh J, Benoit JL, Chase M, Fischberg BL, Flores GE, Link MS, Ornato JP, Perman SM, Sasson C, Zelop CM. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2020; 142:S92-S139. [DOI: 10.1161/cir.0000000000000893] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This
2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations
for advanced life support includes updates on multiple advanced life support topics addressed with 3 different types of reviews. Topics were prioritized on the basis of both recent interest within the resuscitation community and the amount of new evidence available since any previous review. Systematic reviews addressed higher-priority topics, and included double-sequential defibrillation, intravenous versus intraosseous route for drug administration during cardiac arrest, point-of-care echocardiography for intra-arrest prognostication, cardiac arrest caused by pulmonary embolism, postresuscitation oxygenation and ventilation, prophylactic antibiotics after resuscitation, postresuscitation seizure prophylaxis and treatment, and neuroprognostication. New or updated treatment recommendations on these topics are presented. Scoping reviews were conducted for anticipatory charging and monitoring of physiological parameters during cardiopulmonary resuscitation. Topics for which systematic reviews and new Consensuses on Science With Treatment Recommendations were completed since 2015 are also summarized here. All remaining topics reviewed were addressed with evidence updates to identify any new evidence and to help determine which topics should be the highest priority for systematic reviews in the next 1 to 2 years.
Collapse
|
24
|
Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ, Kurz MC, Lavonas EJ, Morley PT, O’Neil BJ, Peberdy MA, Rittenberger JC, Rodriguez AJ, Sawyer KN, Berg KM, Arafeh J, Benoit JL, Chase M, Fernandez A, de Paiva EF, Fischberg BL, Flores GE, Fromm P, Gazmuri R, Gibson BC, Hoadley T, Hsu CH, Issa M, Kessler A, Link MS, Magid DJ, Marrill K, Nicholson T, Ornato JP, Pacheco G, Parr M, Pawar R, Jaxton J, Perman SM, Pribble J, Robinett D, Rolston D, Sasson C, Satyapriya SV, Sharkey T, Soar J, Torman D, Von Schweinitz B, Uzendu A, Zelop CM, Magid DJ. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020; 142:S366-S468. [DOI: 10.1161/cir.0000000000000916] [Citation(s) in RCA: 371] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Lupton JR, Kurz MC, Daya MR. Neurologic prognostication after resuscitation from cardiac arrest. J Am Coll Emerg Physicians Open 2020; 1:333-341. [PMID: 33000056 PMCID: PMC7493528 DOI: 10.1002/emp2.12109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Out-of-hospital cardiac arrest remains a leading cause of mortality in the United States, and the majority of patients who die after achieving return of spontaneous circulation die from withdrawal of care due to a perceived poor neurologic prognosis. Unfortunately, withdrawal of care often occurs during the first day of admission and research suggests this early withdrawal of care may be premature and result in unnecessary deaths for patients who would have made a full neurologic recovery. In this review, we explore the evidence for neurologic prognostication in the emergency department for patients who achieve return of spontaneous circulation after an out-of-hospital cardiac arrest.
Collapse
Affiliation(s)
| | | | - Mohamud R Daya
- Oregon Health and Science University Portland Oregon USA
| |
Collapse
|
26
|
Sandroni C, D'Arrigo S, Cacciola S, Hoedemaekers CWE, Kamps MJA, Oddo M, Taccone FS, Di Rocco A, Meijer FJA, Westhall E, Antonelli M, Soar J, Nolan JP, Cronberg T. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med 2020; 46:1803-1851. [PMID: 32915254 PMCID: PMC7527362 DOI: 10.1007/s00134-020-06198-w] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
Purpose To assess the ability of clinical examination, blood biomarkers, electrophysiology, or neuroimaging assessed within 7 days from return of spontaneous circulation (ROSC) to predict poor neurological outcome, defined as death, vegetative state, or severe disability (CPC 3–5) at hospital discharge/1 month or later, in comatose adult survivors from cardiac arrest (CA). Methods PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews (January 2013–April 2020) were searched. Sensitivity and false-positive rate (FPR) for each predictor were calculated. Due to heterogeneities in recording times, predictor thresholds, and definition of some predictors, meta-analysis was not performed. Results Ninety-four studies (30,200 patients) were included. Bilaterally absent pupillary or corneal reflexes after day 4 from ROSC, high blood values of neuron-specific enolase from 24 h after ROSC, absent N20 waves of short-latency somatosensory-evoked potentials (SSEPs) or unequivocal seizures on electroencephalogram (EEG) from the day of ROSC, EEG background suppression or burst-suppression from 24 h after ROSC, diffuse cerebral oedema on brain CT from 2 h after ROSC, or reduced diffusion on brain MRI at 2–5 days after ROSC had 0% FPR for poor outcome in most studies. Risk of bias assessed using the QUIPS tool was high for all predictors. Conclusion In comatose resuscitated patients, clinical, biochemical, neurophysiological, and radiological tests have a potential to predict poor neurological outcome with no false-positive predictions within the first week after CA. Guidelines should consider the methodological concerns and limited sensitivity for individual modalities. (PROSPERO CRD42019141169) Electronic supplementary material The online version of this article (10.1007/s00134-020-06198-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sonia D'Arrigo
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.
| | - Sofia Cacciola
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy
| | | | - Marlijn J A Kamps
- Intensive Care Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mauro Oddo
- Department of Intensive Care Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Arianna Di Rocco
- Department of Public Health and Infectious Disease, Sapienza University, Rome, Italy
| | - Frederick J A Meijer
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Erik Westhall
- Department of ClinicalSciences, Clinical Neurophysiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jasmeet Soar
- Critical Care Unit, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Jerry P Nolan
- Department of Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, UK
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
27
|
Abstract
OBJECTIVES To characterize neurofilament light levels in children who achieved return of spontaneous circulation following cardiac arrest compared with healthy controls and determine an association between neurofilament light levels and clinical outcomes. DESIGN Retrospective cohort study. SETTING Academic quaternary PICU. PATIENTS Children with banked plasma samples from an acute respiratory distress syndrome biomarker study who achieved return of spontaneous circulation after a cardiac arrest and healthy controls. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Neurofilament light levels were determined with a highly sensitive single molecule array digital immunoassay. Patients were categorized into survivors and nonsurvivors and into favorable (Pediatric Cerebral Performance Category score of 1-2 or unchanged from baseline) or unfavorable (Pediatric Cerebral Performance Category score of 3-6 or Pediatric Cerebral Performance Category score change ≥1 from baseline). Associations between neurofilament light level and outcomes were determined using Wilcoxon rank-sum test. We enrolled 32 patients with cardiac arrest and 18 healthy controls. Demographics, severity of illness, and baseline Pediatric Cerebral Performance Category scores were similar between survivors and nonsurvivors. Healthy controls had lower median neurofilament light levels than patients after cardiac arrest (5.5 [interquartile range 5.0-8.2] vs 31.0 [12.0-338.6]; p < 0.001). Neurofilament light levels were higher in nonsurvivors than survivors (78.5 [26.2-509.1] vs 12.4 [10.3-28.2]; p = 0.012) and higher in survivors than healthy controls (p = 0.009). The four patients who survived with a favorable outcome had neurofilament light levels that were not different from patients with unfavorable outcomes (21.9 [8.5--35.7] vs 37.2 [15.4-419.1]; p = 0.60) although two of the four patients who survived with favorable outcomes had progressive encephalopathies with both baseline and postcardiac arrest Pediatric Cerebral Performance Category scores of 4. CONCLUSIONS Neurofilament light is a blood biomarker of hypoxic-ischemic brain injury and may help predict survival and neurologic outcome after pediatric cardiac arrest. Further study in a larger, dedicated cardiac arrest cohort with serial longitudinal measurements is warranted.
Collapse
|
28
|
Gordon BA. Neurofilaments in disease: what do we know? Curr Opin Neurobiol 2020; 61:105-115. [PMID: 32151970 PMCID: PMC7198337 DOI: 10.1016/j.conb.2020.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Neurofilaments are proteins selectively expressed in the cytoskeleton of neurons, and increased levels are a marker of damage. Elevated neurofilament levels can serve as a marker of ongoing disease activity as well as a tool to measure response to therapeutic intervention. The potential utility of neurofilaments has drastically increased as recent advances have made it possible to measure levels in both the cerebrospinal fluid and blood. There is mounting evidence that neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (NfH) are abnormal in a host of neurodegenerative diseases. In this review we examine how both of these proteins behave across diseases and what we know about how these biomarkers relate to in vivo white matter pathology and each other.
Collapse
Affiliation(s)
- Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA; Psychological & Brain Sciences, Washington University in St. Louis, MO, USA.
| |
Collapse
|
29
|
Moseby-Knappe M, Mattsson N, Nielsen N, Zetterberg H, Blennow K, Dankiewicz J, Dragancea I, Friberg H, Lilja G, Insel PS, Rylander C, Westhall E, Kjaergaard J, Wise MP, Hassager C, Kuiper MA, Stammet P, Wanscher MCJ, Wetterslev J, Erlinge D, Horn J, Pellis T, Cronberg T. Serum Neurofilament Light Chain for Prognosis of Outcome After Cardiac Arrest. JAMA Neurol 2019; 76:64-71. [PMID: 30383090 DOI: 10.1001/jamaneurol.2018.3223] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Prognostication of neurologic outcome after cardiac arrest is an important but challenging aspect of patient therapy management in critical care units. Objective To determine whether serum neurofilament light chain (NFL) levels can be used for prognostication of neurologic outcome after cardiac arrest. Design, Setting and Participants Prospective clinical biobank study of data from the randomized Target Temperature Management After Cardiac Arrest trial, an international, multicenter study with 29 participating sites. Patients were included between November 11, 2010, and January 10, 2013. Serum NFL levels were analyzed between August 1 and August 23, 2017, after trial completion. A total of 782 unconscious patients with out-of-hospital cardiac arrest of presumed cardiac origin were eligible. Exposures Serum NFL concentrations analyzed at 24, 48, and 72 hours after cardiac arrest with an ultrasensitive immunoassay. Main Outcomes and Measures Poor neurologic outcome at 6-month follow-up, defined according to the Cerebral Performance Category Scale as cerebral performance category 3 (severe cerebral disability), 4 (coma), or 5 (brain death). Results Of 782 eligible patients, 65 patients (8.3%) were excluded because of issues with aliquoting, missing sampling, missing outcome, or transport problems of samples. Of the 717 patients included (91.7%), 580 were men (80.9%) and median (interquartile range [IQR]) age was 65 (56-73) years. A total of 360 patients (50.2%) had poor neurologic outcome at 6 months. Median (IQR) serum NFL level was significantly increased in the patients with poor outcome vs good outcome at 24 hours (1426 [299-3577] vs 37 [20-70] pg/mL), 48 hours (3240 [623-8271] vs 46 [26-101] pg/mL), and 72 hours (3344 [845-7838] vs 54 [30-122] pg/mL) (P < .001 at all time points), with high overall performance (area under the curve, 0.94-0.95) and high sensitivities at high specificities (eg, 69% sensitivity with 98% specificity at 24 hours). Serum NFL levels had significantly greater performance than the other biochemical serum markers (ie, tau, neuron-specific enolase, and S100). At comparable specificities, serum NFL levels had greater sensitivity for poor outcome compared with routine electroencephalogram, somatosensory-evoked potentials, head computed tomography, and both pupillary and corneal reflexes (ranging from 29.2% to 49.0% greater for serum NFL level). Conclusions and Relevance Findings from this study suggest that the serum NFL level is a highly predictive marker of long-term poor neurologic outcome at 24 hours after cardiac arrest and may be a useful complement to currently available neurologic prognostication methods.
Collapse
Affiliation(s)
- Marion Moseby-Knappe
- Department of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Niklas Mattsson
- Department of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden.,Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Niklas Nielsen
- Department of Clinical Sciences Lund, Anesthesia and Intensive Care, Lund University, Helsingborg Hospital, Lund, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, University College of London Institute of Neurology, London, United Kingdom.,United Kingdom Dementia Research Institute, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Josef Dankiewicz
- Department of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Irina Dragancea
- Department of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences Lund, Anesthesia and Intensive Care, Lund University, Skåne University Hospital, Lund, Sweden
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Philip S Insel
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Christian Rylander
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Westhall
- Department of Clinical Sciences Lund, Clinical Neurophysiology, Skåne University Hospital, Lund, Sweden
| | - Jesper Kjaergaard
- Departments of Cardiology, Rigshospitalet and Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Matt P Wise
- Adult Critical Care, University Hospital of Wales, Cardiff, United Kingdom
| | - Christian Hassager
- Departments of Cardiology, Rigshospitalet and Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael A Kuiper
- Department of Intensive Care, Medical Center Leeuwarden, Leeuwarden, the Netherlands
| | | | - Michael C Jaeger Wanscher
- Department of Cardiothoracic Anaesthesia, The Heart Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jørn Wetterslev
- Copenhagen Trial Unit, Centre for Clinical Intervention Research Department, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - David Erlinge
- Department of Clinical Sciences Lund, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Janneke Horn
- Department of Intensive Care, Academic Medical Center, Amsterdam, the Netherlands
| | - Tommaso Pellis
- Anesthesia and Intensive Care, Card. G. Panico Hospital Agency, Tricase, Italy
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
30
|
Non-Coding RNAs to Aid in Neurological Prognosis after Cardiac Arrest. Noncoding RNA 2018; 4:ncrna4040042. [PMID: 30567385 PMCID: PMC6316658 DOI: 10.3390/ncrna4040042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease in general, and sudden cardiac death in particular, have an enormous socio-economic burden worldwide. Despite significant efforts to improve cardiopulmonary resuscitation, survival rates remain low. Moreover, patients who survive to hospital discharge have a high risk of developing severe physical or neurological symptoms. Being able to predict outcomes after resuscitation from cardiac arrest would make it possible to tailor healthcare approaches, thereby maximising efforts for those who would mostly benefit from aggressive therapy. However, the identification of patients at risk of poor recovery after cardiac arrest is still a challenging task which could be facilitated by novel biomarkers. Recent investigations have recognised the potential of non-coding RNAs to aid in outcome prediction after cardiac arrest. In this review, we summarize recent discoveries and propose a handful of novel perspectives for the use of non-coding RNAs to predict outcome after cardiac arrest, discussing their use for precision medicine.
Collapse
|
31
|
Impact of internal and external electrical cardioversion on cardiac specific enzymes and inflammation in patients with atrial fibrillation and heart failure. J Cardiol 2018; 72:135-139. [DOI: 10.1016/j.jjcc.2018.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 01/14/2023]
|
32
|
Gul SS, Huesgen KW, Wang KK, Mark K, Tyndall JA. Prognostic utility of neuroinjury biomarkers in post out-of-hospital cardiac arrest (OHCA) patient management. Med Hypotheses 2017; 105:34-47. [PMID: 28735650 DOI: 10.1016/j.mehy.2017.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/04/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022]
Abstract
Despite aggressive intervention, patients who survive an out-of-hospital cardiac arrest (OHCA) generally have very poor prognoses, with nationwide survival rates of approximately 10-20%. Approximately 90% of survivors will have moderate to severe neurological injury ranging from moderate cognitive impairment to brain death. Currently, few early prognostic indicators are considered reliable enough to support patients' families and clinicians' in their decisions regarding medical futility. Blood biomarkers of neurological injury after OHCA may be of prognostic value in these cases. When most bodily tissues are oxygen-deprived, cellular metabolism switches from aerobic to anaerobic respiration. Neurons are a notable exception, however, being dependent solely upon aerobic respiration. Thus, after several minutes without circulating oxygen, neurons sustain irreversible damage, and certain measurable biomarkers are released into the circulation. Prior studies have demonstrated value in blood biomarkers in prediction of survival and neurologic impairment after OHCA. We hypothesize that understanding peptide biomarker kinetics in the early return of spontaneous circulation (ROSC) period, especially in the setting of refractory cardiac arrest, may assist clinicians in determining prognosis earlier in acute resuscitation. Specifically, during and after immediate resuscitation and return of ROSC, clinicians and families face a series of important questions regarding patient prognosis, futility of care and allocation of scarce resources such as the early initiation of extracorporeal cardiopulmonary resuscitation (ECPR). The ability to provide early prognostic information in this setting is highly valuable. Currently available, as well as potential biomarkers that could be good candidates in prognostication of neurological outcomes after OHCA or in the setting of refractory cardiac arrest will be reviewed and discussed.
Collapse
Affiliation(s)
- S S Gul
- Department of Emergency Medicine, University of Florida, 1329, SW 16th Street, Suite 5270, Gainesville, FL 32608, United States
| | - K W Huesgen
- Department of Emergency Medicine, University of Florida, 1329, SW 16th Street, Suite 5270, Gainesville, FL 32608, United States
| | - K K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Gainesville, FL 32610, United States
| | - K Mark
- Department of Emergency Medicine, University of Florida, 1329, SW 16th Street, Suite 5270, Gainesville, FL 32608, United States
| | - J A Tyndall
- Department of Emergency Medicine, University of Florida, 1329, SW 16th Street, Suite 5270, Gainesville, FL 32608, United States.
| |
Collapse
|
33
|
Neuroprognostication after cardiac arrest in the light of targeted temperature management. Curr Opin Crit Care 2017; 23:244-250. [DOI: 10.1097/mcc.0000000000000406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Translating biomarkers from research to clinical use in pediatric neurocritical care: focus on traumatic brain injury and cardiac arrest. Curr Opin Pediatr 2017; 29:272-279. [PMID: 28319562 DOI: 10.1097/mop.0000000000000488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) and cardiac arrest are important causes of morbidity and mortality in children. Improved diagnosis and outcome prognostication using validated biomarkers could allow clinicians to better tailor therapies for optimal efficacy. RECENT FINDINGS Contemporary investigation has yielded plentiful biomarker candidates of central nervous system (CNS) injury, including macromolecules, genetic, inflammatory, oxidative, and metabolic biomarkers. Biomarkers have yet to be validated and translated into bedside point-of-care or cost-effective and efficient laboratory tests. Validation testing should consider developmental status, injury mechanism, and time trajectory with patient-centered outcomes. SUMMARY Recent investigation of biomarkers of CNS injury may soon improve diagnosis, management, and prognostication in children with traumatic brain injury and cardiac arrest.
Collapse
|
35
|
Iłżecki M, Iłżecka J, Przywara S, Terlecki P, Grabarska A, Stepulak A, Zubilewicz T. Effect of carotid endarterectomy on brain damage markers. Acta Neurol Scand 2017; 135:352-359. [PMID: 27126899 DOI: 10.1111/ane.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Carotid endarterectomy (CEA) is a recommended treatment in the prevention of ischemic stroke. However, this procedure may cause neurological complications caused by cerebrovascular damage. While YKL-40 is a proinflammatory protein, neurofilament light polypeptide (NEFL) and brain lipid-binding protein (FABP7) are structural components of the brain. The aim of the study was to investigate YKL-40, NEFL, and FABP7 in the serum of patients undergoing CEA. MATERIALS AND METHODS The study included 25 participants who underwent CEA due to internal carotid artery stenosis. Blood samples were taken from each patient at three different intervals: prior to the surgery, 12 h after the surgery, and 48 h after the surgery. Serum levels of these brain damage markers were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The study showed that the serum YKL-40 level was significantly increased 48 h after CEA when compared to the level prior to surgery and also when compared to levels 12 h after surgery. There were no statistically significant differences in serum NEFL and FABP7 levels between all three recorded measurements. CONCLUSIONS Data from our study showed that CEA affects serum YKL-40 but not NEFL and FABP7 levels. This implicates that YKL-40 may be a valuable serum marker of brain damage after CEA. However, the observed change in serum YKL-40 level in patients after CEA does not necessarily warrant a change in recommendations concerning the use of this treatment in patients with high-grade internal carotid artery stenosis.
Collapse
Affiliation(s)
- M. Iłżecki
- Chair and Department of Vascular Surgery and Angiology; Medical University of Lublin; Lublin Poland
| | - J. Iłżecka
- Chair and Department of Vascular Surgery and Angiology; Medical University of Lublin; Lublin Poland
- Independent Neurological Rehabilitation Unit; Medical University of Lublin; Lublin Poland
| | - S. Przywara
- Chair and Department of Vascular Surgery and Angiology; Medical University of Lublin; Lublin Poland
| | - P. Terlecki
- Chair and Department of Vascular Surgery and Angiology; Medical University of Lublin; Lublin Poland
| | - A. Grabarska
- Chair and Department of Biochemistry and Molecular Biology; Medical University of Lublin; Lublin Poland
| | - A. Stepulak
- Chair and Department of Biochemistry and Molecular Biology; Medical University of Lublin; Lublin Poland
| | - T. Zubilewicz
- Chair and Department of Vascular Surgery and Angiology; Medical University of Lublin; Lublin Poland
| |
Collapse
|
36
|
Larsson IM, Wallin E, Kristofferzon ML, Niessner M, Zetterberg H, Rubertsson S. Post-cardiac arrest serum levels of glial fibrillary acidic protein for predicting neurological outcome. Resuscitation 2014; 85:1654-61. [DOI: 10.1016/j.resuscitation.2014.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/06/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
|
37
|
Secretoneurin as a marker for hypoxic brain injury after cardiopulmonary resuscitation. Intensive Care Med 2014; 40:1518-27. [DOI: 10.1007/s00134-014-3423-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/23/2014] [Indexed: 11/27/2022]
|
38
|
Gaiottino J, Norgren N, Dobson R, Topping J, Nissim A, Malaspina A, Bestwick JP, Monsch AU, Regeniter A, Lindberg RL, Kappos L, Leppert D, Petzold A, Giovannoni G, Kuhle J. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One 2013; 8:e75091. [PMID: 24073237 PMCID: PMC3779219 DOI: 10.1371/journal.pone.0075091] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/08/2013] [Indexed: 11/25/2022] Open
Abstract
Objective Neuronal damage is the morphological substrate of persisting neurological disability. Neurofilaments (Nf) are cytoskeletal proteins of neurons and their release into cerebrospinal fluid has shown encouraging results as a biomarker for neurodegeneration. This study aimed to validate the quantification of the Nf light chain (NfL) in blood samples, as a biofluid source easily accessible for longitudinal studies. Methods We developed and applied a highly sensitive electrochemiluminescence (ECL) based immunoassay for quantification of NfL in blood and CSF. Results Patients with Alzheimer’s disease (AD) (30.8 pg/ml, n=20), Guillain-Barré-syndrome (GBS) (79.4 pg/ml, n=19) or amyotrophic lateral sclerosis (ALS) (95.4 pg/ml, n=46) had higher serum NfL values than a control group of neurological patients without evidence of structural CNS damage (control patients, CP) (4.4 pg/ml, n=68, p<0.0001 for each comparison, p=0.002 for AD patients) and healthy controls (HC) (3.3 pg/ml, n=67, p<0.0001). Similar differences were seen in corresponding CSF samples. CSF and serum levels correlated in AD (r=0.48, p=0.033), GBS (r=0.79, p<0.0001) and ALS (r=0.70, p<0.0001), but not in CP (r=0.11, p=0.3739). The sensitivity and specificity of serum NfL for separating ALS from healthy controls was 91.3% and 91.0%. Conclusions We developed and validated a novel ECL based sandwich immunoassay for the NfL protein in serum (NfLUmea47:3); levels in ALS were more than 20-fold higher than in controls. Our data supports further longitudinal studies of serum NfL in neurodegenerative diseases as a potential biomarker of on-going disease progression, and as a potential surrogate to quantify effects of neuroprotective drugs in clinical trials.
Collapse
Affiliation(s)
- Johanna Gaiottino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Bone & Joint Research Unit, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | | | - Ruth Dobson
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Joanne Topping
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ahuva Nissim
- Bone & Joint Research Unit, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Andrea Malaspina
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- North-East London and Essex Regional MND Care Centre, London, United Kingdom
| | - Jonathan P. Bestwick
- Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andreas U. Monsch
- Memory Clinic, Department of Geriatrics, University Hospital, Basel, Basel, Switzerland
| | - Axel Regeniter
- Laboratory Medicine, University Hospital, Basel, Basel, Switzerland
| | - Raija L. Lindberg
- Department of Neurology, University Hospital, Basel, Basel, Switzerland
| | - Ludwig Kappos
- Department of Neurology, University Hospital, Basel, Basel, Switzerland
| | - David Leppert
- Department of Neurology, University Hospital, Basel, Basel, Switzerland
| | - Axel Petzold
- UCL Institute of Neurology, Department of Neuroinflammation, London, United Kingdom
| | - Gavin Giovannoni
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jens Kuhle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Bone & Joint Research Unit, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
- Department of Neurology, University Hospital, Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Lépinoux-Chambaud C, Eyer J. Review on intermediate filaments of the nervous system and their pathological alterations. Histochem Cell Biol 2013; 140:13-22. [PMID: 23749407 DOI: 10.1007/s00418-013-1101-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2013] [Indexed: 11/28/2022]
Abstract
Intermediate filaments (IFs) of the nervous system, including neurofilaments, α-internexin, glial fibrillary acidic protein, synemin, nestin, peripherin and vimentin, are finely expressed following elaborated cell, tissue and developmental specific patterns. A common characteristic of several neurodegenerative diseases is the abnormal accumulation of neuronal IFs in cell bodies or along the axon, often associated with impairment of the axonal transport and degeneration of neurons. In this review, we also present several perturbations of IF metabolism and organization associated with neurodegenerative disorders. Such modifications could represent strong markers of neuronal damages. Moreover, recent data suggest that IFs represent potential biomarkers to determine the disease progression or the differential stages of a neuronal disorder. Finally, recent investigations on IF expression and function in cancer provide evidence that they may be useful as markers, or targets of brain tumours, especially high-grade glioma. A better knowledge of the molecular mechanisms of IF alterations, combined to neuroimaging, is essential to improve diagnosis and therapeutic strategies of such neurodegenerative diseases and glioma.
Collapse
Affiliation(s)
- Claire Lépinoux-Chambaud
- Laboratoire Neurobiologie and Transgenese, LUNAM, UPRES EA-3143, Centre Hospitalier Universitaire, Bâtiment IBS-IRIS, Université d'Angers, 49033, Angers, France
| | | |
Collapse
|