1
|
Li Y, Zheng M, Limbara S, Zhang S, Yu Y, Yu L, Jiao J. Effects of the Pituitary-targeted Gland Axes on Hepatic Lipid Homeostasis in Endocrine-associated Fatty Liver Disease-A Concept Worth Revisiting. J Clin Transl Hepatol 2024; 12:416-427. [PMID: 38638376 PMCID: PMC11022059 DOI: 10.14218/jcth.2023.00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatic lipid homeostasis is not only essential for maintaining normal cellular and systemic metabolic function but is also closely related to the steatosis of the liver. The controversy over the nomenclature of non-alcoholic fatty liver disease (NAFLD) in the past three years has once again sparked in-depth discussions on the pathogenesis of this disease and its impact on systemic metabolism. Pituitary-targeted gland axes (PTGA), an important hormone-regulating system, are indispensable in lipid homeostasis. This review focuses on the roles of thyroid hormones, adrenal hormones, sex hormones, and their receptors in hepatic lipid homeostasis, and summarizes recent research on pituitary target gland axes-related drugs regulating hepatic lipid metabolism. It also calls on researchers and clinicians to recognize the concept of endocrine-associated fatty liver disease (EAFLD) and to re-examine human lipid metabolism from the macroscopic perspective of homeostatic balance.
Collapse
Affiliation(s)
- Yifang Li
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Meina Zheng
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Steven Limbara
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Shanshan Zhang
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yutao Yu
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Le Yu
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Jian Jiao
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Wei H, Yin Y, Yang W, Zhu J, Chen L, Guo R, Yang Z, Li S. Nuciferine induces autophagy to relieve vascular cell adhesion molecule 1 activation via repressing the Akt/mTOR/AP1 signal pathway in the vascular endothelium. Front Pharmacol 2023; 14:1264324. [PMID: 37841916 PMCID: PMC10569124 DOI: 10.3389/fphar.2023.1264324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Pro-inflammatory factor-associated vascular cell adhesion molecule 1 (VCAM1) activation initiates cardiovascular events. This study aimed to explore the protective role of nuciferine on TNFα-induced VCAM1 activation. Nuciferine was administrated to both high-fat diet (HFD)-fed mice and the TNFα-exposed human vascular endothelial cell line. VCAM1 expression and further potential mechanism(s) were explored. Our data revealed that nuciferine intervention alleviated VCAM1 activation in response to both high-fat diet and TNFα exposure, and this protective effect was closely associated with autophagy activation since inhibiting autophagy by either genetic or pharmaceutical approaches blocked the beneficial role of nuciferine. Mechanistical studies revealed that Akt/mTOR inhibition, rather than AMPK, SIRT1, and p38 signal pathways, contributed to nuciferine-activated autophagy, which further ameliorated TNFα-induced VCAM1 via repressing AP1 activation, independent of transcriptional regulation by IRF1, p65, SP1, and GATA6. Collectively, our data uncovered a novel biological function for nuciferine in protecting VCAM1 activation, implying its potential application in improving cardiovascular events.
Collapse
Affiliation(s)
- Haibin Wei
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Biobank, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yujie Yin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenwen Yang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyan Zhu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Guo
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Yang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Chen JM, Wu TY, Wu YF, Kuo KL. Association of the serum calcium level with metabolic syndrome and its components among adults in Taiwan. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e000632. [PMID: 37249460 PMCID: PMC10665046 DOI: 10.20945/2359-3997000000632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/02/2023] [Indexed: 05/31/2023]
Abstract
Objective An increasing amount of literature indicates that the serum calcium level may be related to metabolic syndrome (MetS) and obesity. This study aimed to examine the relationship between the serum calcium level and MetS in adults in Taiwan. Subjects and methods We conducted a crosssectional study and enrolled 1,580 participants (54.4% women; mean age, 33.28 ± 12.21 years) who underwent health examinations in northern Taiwan between 2012 and 2016. Logistic regression was performed to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) for the risk of MetS and its components in groups of patients in the tertiles of the serum calcium level. Results In total, 167 participants (10.6%) had MetS. The odds of high systolic blood pressure (BP), blood glucose, and triglyceride (TG) levels significantly increased as the serum calcium level increased. Compared with the participants in the lowest tertile of the serum calcium level (tertile 1), those in the second tertile (OR = 1.47, 95% CI: 0.97-2.23) and third tertile (OR = 1.63, 95% CI: 1.06-2.53) had a significantly higher risk of MetS. Further analyses revealed a significant association between MetS and an increased serum calcium level in those in the overweight and obese groups. However, there was no association between the serum calcium levels and MetS in those in the normal weight group. Conclusion This study demonstrated that a higher serum calcium level is associated with an increased risk of MetS and its components in adults with overweight and obesity.
Collapse
Affiliation(s)
- Jer-Min Chen
- Department of Family Medicine, Renai Branch, Taipei City Hospital, Taipei, Taiwan,
- Department of Psychology and Counseling, University of Taipei, Taipei, Taiwan
| | - Tai-Yin Wu
- Department of Family Medicine, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Fan Wu
- Department of Family Medicine, Renai Branch, Taipei City Hospital, Taipei, Taiwan
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Kuan-Liang Kuo
- Department of Family Medicine, Renai Branch, Taipei City Hospital, Taipei, Taiwan
- Institute of BioMedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Meng X, Han T, Jiang W, Dong F, Sun H, Wei W, Yan Y. Temporal Relationship Between Changes in Serum Calcium and Hypercholesteremia and Its Impact on Future Brachial-Ankle Pulse Wave Velocity Levels. Front Nutr 2021; 8:754358. [PMID: 34869527 PMCID: PMC8635801 DOI: 10.3389/fnut.2021.754358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The high levels of serum calcium and cholesterol are the important risk factors of cardiovascular disease (CVD), which frequently influence each other during the development of CVD. However, few studies have examined their temporal relationship to confirm the precursor, and it is still largely unknown whether and how their temporal relationship would influence the development of CVD. This study aimed to establish the temporal relationship between the changes in serum calcium and cholesterol using the longitudinal cohort data, and examine whether this temporal relationship influenced the arterial elasticity indicated by brachial-ankle pulse wave velocity (baPWV). Methods: This is a cohort study with a sample of 3,292 Chinese participants (aged 20-74 years) with 5.7 years follow-up. Serum calcium and cholesterol were measured at baseline and follow-up survey. The cross-lagged path analysis was used to examine their temporal relationship, and mediation analysis was performed to evaluate the potential mediating effect. Results: The cross-lagged path coefficients (β2 values) from baseline serum calcium to follow-up cholesterol was significantly greater than the path coefficients (β1 values) from baseline cholesterol to follow-up serum calcium (β2 = 0.110 vs. β1 = 0.047; P = 0.010) after adjusting for the multiple covariates. The path coefficients from baseline serum calcium to follow-up cholesterol in the participants with high baPWV was significantly greater than the participants with low baPWV (β2 = 0.155 for high baPWV and β2 = 0.077 for low baPWV, P = 0.028 for the difference between the β2 values). Moreover, cholesterol partially mediated the association between the higher serum calcium and greater subsequent baPWV values, the percentage of the total effect mediated by cholesterol was estimated at 21.7%. Conclusion: Our findings indicate that increased serum calcium precedes increased in serum cholesterol, and this temporal relationship may contribute to the development of higher baPWV levels.
Collapse
Affiliation(s)
- Xing Meng
- Division of Clinical Nutrition, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Wenbo Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Fengli Dong
- Division of Clinical Nutrition, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxue Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Wei
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yageng Yan
- Division of Clinical Nutrition, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Peng Y, Hu L, Nie X, Cai S, Yan R, Liu Y, Cai Y, Song W, Peng X. The Role of Serum Calcium Levels in Pediatric Dyslipidemia: Are There Any? Front Pediatr 2021; 9:712160. [PMID: 34434908 PMCID: PMC8380842 DOI: 10.3389/fped.2021.712160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022] Open
Abstract
Background: No previous study explored the association between serum calcium levels and dyslipidemia in children. This study aimed to explore this relationship in children, based on a multicenter cross-sectional study population in China. Methods: Cross-sectional data was derived from the Pediatric Reference Intervals in China (PRINCE) study conducted between 2017 and 2018 involving 5,252 males and 5,427 females with a mean age of 10.0 ± 4.6 years. Multivariable logistic regression models were applied to calculate odds ratios (ORs), with 95% confidence intervals (CIs), for dyslipidemia of each serum calcium level and albumin-corrected calcium levels, which were sorted into quartiles. The restricted cubic spline model was fitted for the dose-response analysis. An L-shaped dose-response relation between calcium levels and the probability of dyslipidemia was found after the adjustment for multiple potential confounding factors, p for non-linear < 0.001. Results: Using the middle category of calcium level as the reference, multivariable-adjusted ORs and 95% CIs of the lowest and the highest quartile categories were 0.96 (0.82-1.12) and 1.29 (1.12-1.48), respectively, for total serum calcium levels and 1.06 (0.91-1.23) and 1.39 (1.21-1.60) for albumin-corrected calcium levels. Conclusions: Individuals with higher levels of serum calcium were associated with increased risk of dyslipidemia in a sample of a healthy Chinese pediatric population. The association between serum calcium levels and dyslipidemia needs to be examined prospectively in future studies.
Collapse
Affiliation(s)
- Yaguang Peng
- Center for Clinical Epidemiology and Evidence-Based Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lixin Hu
- Clinical Laboratory Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaolu Nie
- Center for Clinical Epidemiology and Evidence-Based Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Siyu Cai
- Center for Clinical Epidemiology and Evidence-Based Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ruohua Yan
- Center for Clinical Epidemiology and Evidence-Based Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yali Liu
- Center for Clinical Epidemiology and Evidence-Based Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yanying Cai
- Clinical Laboratory Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wenqi Song
- Clinical Laboratory Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Peng
- Center for Clinical Epidemiology and Evidence-Based Medicine, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Hao L, Zhong W, Sun X, Zhou Z. TLR9 Signaling Protects Alcohol-Induced Hepatic Oxidative Stress but Worsens Liver Inflammation in Mice. Front Pharmacol 2021; 12:709002. [PMID: 34262465 PMCID: PMC8273378 DOI: 10.3389/fphar.2021.709002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Toll-Like Receptor 9 (TLR9) elicits cellular response to nucleic acids derived from pathogens or dead cells. Previous studies have shown that TLR9-driven response may lead to differential impact on the pathogenesis of liver diseases. This study aimed to determine how TLR9 may contribute to chronic alcohol exposure-induced liver pathogenesis. We observed that TLR9 KO mice were more susceptible to alcohol-induced liver injury, which was evidenced by higher serum ALT/AST levels and more lipid accumulation in alcohol-fed TLR9 KO mice than wild-type mice. Alcohol-induced oxidative stress and mitochondrial dysfunction were also exacerbated by TLR9 KO. We found that chronic alcohol exposure-induced hepatic CHOP and ATF6 activation were enhanced in TLR9 KO mice. By using primary hepatocytes and AML-12 cells, we confirmed that TLR9 activation by CpG ODN administration significantly ameliorated acetaldehyde-induced cell injury via suppressing ATF6-CHOP signaling. By using STAT3 knockdown AML12 cells, we showed that TLR9-mediated STAT3 activation inhibited ATF6-CHOP signaling cascade and thereby protecting against acetaldehyde-induced mitochondrial dysfunction and cell injury. Interestingly, we found that TLR9 KO mice ameliorate chronic alcohol exposure-induced CXCL1 induction and neutrophils infiltration in the liver. Furthermore, hepatocyte lack of STAT3 significantly ameliorated CpG ODN and LPS-increased CXCL1 levels in hepatocytes. Overall, our data demonstrate that TLR9 signaling in hepatocytes counteracts alcohol-induced hepatotoxicity but worsens proinflammatory response.
Collapse
Affiliation(s)
- Liuyi Hao
- Center for Translational Biomedical Research, The University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Wei Zhong
- Center for Translational Biomedical Research, The University of North Carolina at Greensboro, Kannapolis, NC, United States.,Department of Nutrition, The University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Xinguo Sun
- Center for Translational Biomedical Research, The University of North Carolina at Greensboro, Kannapolis, NC, United States
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, The University of North Carolina at Greensboro, Kannapolis, NC, United States.,Department of Nutrition, The University of North Carolina at Greensboro, Kannapolis, NC, United States
| |
Collapse
|
7
|
da Silva JS, Montagnoli TL, Rocha BS, Tacco MLCA, Marinho SCP, Zapata-Sudo G. Estrogen Receptors: Therapeutic Perspectives for the Treatment of Cardiac Dysfunction after Myocardial Infarction. Int J Mol Sci 2021; 22:E525. [PMID: 33430254 PMCID: PMC7825655 DOI: 10.3390/ijms22020525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptors (ER) mediate functions beyond their endocrine roles, as modulation of cardiovascular, renal, and immune systems through anti-inflammatory and anti-apoptotic effects, preventing necrosis of cardiomyocytes and endothelial cells, and attenuating cardiac hypertrophy. Estradiol (E2) prevents cardiac dysfunction, increases nitric oxide synthesis, and reduces the proliferation of vascular cells, yielding protective effects, regardless of gender. Such actions are mediated by ER (ER-alpha (ERα), ER-beta (ERβ), or G protein-coupled ER (GPER)) through genomic or non-genomic pathways, which regulate cardiovascular function and prevent tissue remodeling. Despite the extensive knowledge on the cardioprotective effects of estrogen, clinical studies conducted on myocardial infarction (MI) and cardiovascular diseases still include favorable and unfavorable profiles. The purpose of this review is to provide up-to-date information regarding molecular, preclinical, and clinical aspects of cardiovascular E2 effects and ER modulation as a potential therapeutic target for the treatment of MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jaqueline S. da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Tadeu L. Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Bruna S. Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Matheus L. C. A. Tacco
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Sophia C. P. Marinho
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
- Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
8
|
A Novel STAT3-Mediated GATA6 Pathway Contributes to tert-Butylhydroquinone- (tBHQ-) Protected TNF α-Activated Vascular Cell Adhesion Molecule 1 (VCAM-1) in Vascular Endothelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6584059. [PMID: 33274004 PMCID: PMC7683157 DOI: 10.1155/2020/6584059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
The activation of vascular cell adhesion molecule 1 (VCAM-1) in vascular endothelial cells has been well considered implicating in the initiation and processing of atherosclerosis. Oxidative stress is mechanistically involved in proatherosclerotic cytokine-induced VCAM-1 activation. tert-Butylhydroquinone (tBHQ), a synthetic phenolic antioxidant used for preventing lipid peroxidation of food, possesses strongly antioxidant capacity against oxidative stress-induced dysfunction in various pathological process. Here, we investigated the protective role of tBHQ on tumor necrosis factor alpha- (TNFα-) induced VCAM-1 activation in both aortic endothelium of mice and cultured human vascular endothelial cells and uncovered its potential mechanisms. Our data showed that tBHQ treatment significantly reversed TNFα-induced activation of VCAM-1 at both transcriptional and protein levels. The mechanistic study revealed that inhibiting neither nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nor autophagy blocked the beneficial role of tBHQ. Alternatively, tBHQ intervention markedly alleviated TNFα-increased GATA-binding protein 6 (GATA6) mRNA and protein expressions and its translocation into nucleus. Further investigation indicated that tBHQ-inhibited signal transducer and activator of transcription 3 (STAT3) but not mitogen-activated protein kinase (MAPK) pathway contributed to its protective role against VCAM-1 activation via regulating GATA6. Collectively, our data demonstrated that tBHQ prevented TNFα-activated VCAM-1 via a novel STAT3/GATA6-involved pathway. tBHQ could be a potential candidate for the prevention of proatherosclerotic cytokine-caused inflammatory response and further dysfunctions in vascular endothelium.
Collapse
|
9
|
Kim OY, Kwak SY, Lim H, Shin MJ. Genotype effects of glucokinase regulator on lipid profiles and glycemic status are modified by circulating calcium levels: results from the Korean Genome and Epidemiology Study. Nutr Res 2018; 60:96-105. [PMID: 30527264 DOI: 10.1016/j.nutres.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in the glucokinase regulator (GCKR) are associated with major cardiovascular risk factors (ie, lipid profile and glycemic status). Recently, GCKR was shown to be related to circulating calcium levels involved in lipid and glycemic controls. Therefore, we hypothesized that GCKR SNPs are associated with major cardiovascular risk factors in the Korean population, and the association is modified by circulating calcium levels. Epidemiological data and GCKR SNPs (rs780093T>C, rs780094 T>C, and rs1260326 T>C) were collected from a subset of Ansung-Ansan cohort in the Korean Genome and Epidemiology Study (n = 7815). Consistent with the results of previous studies, GCKR SNPs were significantly associated with decreased total cholesterol and triglyceride levels and increased glucose levels and insulin resistance. Minor C allele carriers, particularly CC homozygotes, had lower serum calcium levels than TT homozygotes for all 3 SNPs. Particularly, the effect of GCKR SNPs on total cholesterol, triglyceride, fasting glucose, and insulin resistance was apparent when serum calcium levels were in normal range (8.8-10.1 mg/dL). When serum calcium levels were high (≥10.2 mg/dL), CC homozygotes also had significantly lower triglyceride and higher fasting glucose than TT homozygotes. However, the associations were not observed when serum calcium levels were low (<8.8 mg/dL). In conclusion, GCKR SNPs are associated with lipid profiles and glycemic status in the Korean population, and the genetic effect is modified by basal circulating calcium levels, particularly in normal or high ranges. It provides important information for individualized prevention and management of cardiovascular risk associated with GCKR SNPs.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 604-714, Republic of Korea
| | - So-Young Kwak
- Department of Public Health Sciences, BK21PLUS Program in Embodiment, Health-Society Interaction, Graduate School, Korea University, Seoul 136-701, Republic of Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min-Jeong Shin
- Department of Public Health Sciences, BK21PLUS Program in Embodiment, Health-Society Interaction, Graduate School, Korea University, Seoul 136-701, Republic of Korea; Korea University Guro Hospital, Korea University, Seoul 152-703, Republic of Korea.
| |
Collapse
|
10
|
Harvey NC, D'Angelo S, Paccou J, Curtis EM, Edwards M, Raisi‐Estabragh Z, Walker‐Bone K, Petersen SE, Cooper C. Calcium and Vitamin D Supplementation Are Not Associated With Risk of Incident Ischemic Cardiac Events or Death: Findings From the UK Biobank Cohort. J Bone Miner Res 2018; 33:803-811. [PMID: 29314248 PMCID: PMC5915292 DOI: 10.1002/jbmr.3375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022]
Abstract
We investigated associations between calcium/vitamin D supplementation and incident cardiovascular events/deaths in a UK population-based cohort. UK Biobank is a large prospective cohort comprising 502,637 men and women aged 40 to 69 years at recruitment. Supplementation with calcium/vitamin D was self-reported, and information on incident hospital admission (ICD-10) for ischemic heart disease (IHD), myocardial infarction (MI), and subsequent death was obtained from linkage to national registers. Cox proportional hazards models were used to investigate longitudinal relationships between calcium/vitamin D supplementation and hospital admission for men/women, controlling for covariates. A total of 475,255 participants (median age 58 years, 55.8% women) had complete data on calcium/vitamin D supplementation. Of that number, 33,437 participants reported taking calcium supplements; 19,089 vitamin D; and 10,007 both. In crude and adjusted analyses, there were no associations between use of calcium supplements and risk of incident hospital admission with either IHD, or subsequent death. Thus, for example, in unadjusted models, the hazard ratio (HR) for admission with myocardial infarction was 0.97 (95% confidence interval [CI] 0.79-1.20, p = 0.79) among women taking calcium supplementation. Corresponding HR for men is 1.16 (95% CI 0.92-1.46, p = 0.22). After full adjustment, HR (95% CI) were 0.82 (0.62-1.07), p = 0.14 among women and 1.12 (0.85-1.48), p = 0.41 among men. Adjusted HR (95% CI) for admission with IHD were 1.05 (0.92-1.19), p = 0.50 among women and 0.97 (0.82-1.15), p = 0.77 among men. Results were similar for vitamin D and combination supplementation. There were no associations with death, and in women, further adjustment for hormone-replacement therapy use did not alter the associations. In this very large prospective cohort, there was no evidence that use of calcium/vitamin D supplementation was associated with increased risk of hospital admission or death after ischemic cardiovascular events. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas C Harvey
- MRC Lifecourse Epidemiology UnitUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Stefania D'Angelo
- MRC Lifecourse Epidemiology UnitUniversity of SouthamptonSouthamptonUK
| | - Julien Paccou
- MRC Lifecourse Epidemiology UnitUniversity of SouthamptonSouthamptonUK
- Université Lille Nord‐de‐FranceLilleFrance
| | | | - Mark Edwards
- MRC Lifecourse Epidemiology UnitUniversity of SouthamptonSouthamptonUK
- Portsmouth Hospitals NHS TrustPortsmouthUK
| | - Zahra Raisi‐Estabragh
- NIHR Barts Biomedical Research CentreWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Karen Walker‐Bone
- MRC Lifecourse Epidemiology UnitUniversity of SouthamptonSouthamptonUK
| | - Steffen E Petersen
- NIHR Barts Biomedical Research CentreWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology UnitUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- NIHR Oxford Biomedical Research CentreUniversity of OxfordOxfordUK
| |
Collapse
|
11
|
Li S, Ning H, Ye Y, Wei W, Guo R, Song Q, Liu L, Liu Y, Na L, Niu Y, Chu X, Feng R, Moustaid-Moussa N, Li Y, Sun C. Increasing extracellular Ca 2+ sensitizes TNF-alpha-induced vascular cell adhesion molecule-1 (VCAM-1) via a TRPC1/ERK1/2/NFκB-dependent pathway in human vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1566-1577. [PMID: 28583863 DOI: 10.1016/j.bbamcr.2017.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 12/29/2022]
Abstract
Increasing circulating Ca2+ levels within the normal range has been reported to positively correlate with the incidence of fatal cardiovascular diseases (CVDs). However, limited studies have been able to delineate the potential mechanism(s) linking circulating Ca2+ to CVD. In this study, we exposed primary human umbilical vein endothelial cells (HUVECs) and human umbilical vein cell line (EA.hy926) to different extracellular Ca2+ to mimic the physiological state. Our data revealed that increasing extracellular Ca2+ significantly enhanced susceptibility to tumor necrosis factor (TNF)-alpha-stimulated vascular cell adhesion molecule (VCAM)-1 expression and monocytes adhesion. Knocking-down VCAM-1 by siRNA abolished calcium-induced monocytes adhesion on HUVECs. Follow up mechanistic investigations identified that extracellular Ca2+-increased calcium influx contributed to the activation of VCAM-1. This was mediated via upregulation of transient receptor potential channel (TRPC)1 in a nuclear factor (NF)κB-dependent manner. Most importantly, we found that a novel TRPC1-regulated extracellular signal-regulated kinase 1/2 (ERK1/2) pathway exclusively contributed to calcium-induced NFκB activation. This study provided direct evidence that increasing extracellular Ca2+ enhanced TNF-alpha-induced VCAM-1 activation and monocytes adhesion. Moreover, we identified a novel TRPC1/ERK1/2/NFκB signaling pathway mediating VCAM-1 activation and monocyte adhesion in this pathological process. Our studies indicate that blood calcium levels should be strictly monitored to help prevent CVD, and that TRPC1 might act as a potential target for the treatment and prevention against increased circulating calcium-enhanced CVDs.
Collapse
Affiliation(s)
- Songtao Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China; Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, 150081, China
| | - Hua Ning
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China
| | - Yaxin Ye
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Rui Guo
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Qing Song
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lei Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yunyun Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lixin Na
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China
| | - Yuchun Niu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China
| | - Xia Chu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX 79409, USA
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
12
|
Palmisano BT, Le TD, Zhu L, Lee YK, Stafford JM. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice. J Lipid Res 2016; 57:1541-51. [PMID: 27354419 DOI: 10.1194/jlr.m069013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism.
Collapse
Affiliation(s)
- Brian T Palmisano
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN
| | - Thao D Le
- Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN
| | - Lin Zhu
- Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - John M Stafford
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
13
|
Insulin Protects Hepatic Lipotoxicity by Regulating ER Stress through the PI3K/Akt/p53 Involved Pathway Independently of Autophagy Inhibition. Nutrients 2016; 8:227. [PMID: 27104558 PMCID: PMC4848695 DOI: 10.3390/nu8040227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 01/16/2023] Open
Abstract
The detrimental role of hepatic lipotoxicity has been well-implicated in the pathogenesis of NAFLD. Previously, we reported that inhibiting autophagy aggravated saturated fatty acid (SFA)-induced hepatotoxicity. Insulin, a physiological inhibitor of autophagy, is commonly increased within NAFLD mainly caused by insulin resistance. We therefore hypothesized that insulin augments the sensitivity of hepatocyte to SFA-induced lipotoxicity. The present study was conducted via employing human and mouse hepatocytes, which were exposed to SFAs, insulin, or their combination. Unexpectedly, our results indicated that insulin protected hepatocytes against SFA-induced lipotoxicity, based on the LDH, MTT, and nuclear morphological measurements, and the detection from cleaved-Parp-1 and -caspase-3 expressions. We subsequently clarified that insulin led to a rapid and short-period inhibition of autophagy, which was gradually recovered after 1 h incubation in hepatocytes, and such extent of inhibition was insufficient to aggravate SFA-induced lipotoxicity. The mechanistic study revealed that insulin-induced alleviation of ER stress contributed to its hepatoprotective role. Pre-treating hepatocytes with insulin significantly stimulated phosphorylated-Akt and reversed SFA-induced up-regulation of p53. Chemical inhibition of p53 by pifithrin-α robustly prevented palmitate-induced cell death. The PI3K/Akt pathway blockade by its special antagonist abolished the protective role of insulin against SFA-induced lipotoxicity and p53 up-regulation. Furthermore, we observed that insulin promoted intracellular TG deposits in hepatocytes in the present of palmitate. However, blocking TG accumulation via genetically silencing DGAT-2 did not prevent insulin-protected lipotoxicity. Our study demonstrated that insulin strongly protected against SFA-induced lipotoxicity in hepatocytes mechanistically through alleviating ER stress via a PI3K/Akt/p53 involved pathway but independently from autophagy.
Collapse
|
14
|
Li S, He Y, Lin S, Hao L, Ye Y, Lv L, Sun Z, Fan H, Shi Z, Li J, Feng R, Na L, Wang Y, Li Y, Sun C. Increase of circulating cholesterol in vitamin D deficiency is linked to reduced vitamin D receptor activity via the Insig-2/SREBP-2 pathway. Mol Nutr Food Res 2016; 60:798-809. [PMID: 26694996 DOI: 10.1002/mnfr.201500425] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 04/01/2025]
Abstract
SCOPE Individuals deficient in vitamin D are more likely to have higher circulating cholesterol levels and cardiovascular diseases. However, the underlying mechanisms are still unclear. METHODS AND RESULTS A cross-sectional survey, animal study, and in vitro experiments were conducted to investigate the effect and mechanisms of vitamin D deficiency on endogenous cholesterol metabolism. We demonstrated that vitamin D deficiency was positively associated with an increase of total serum cholesterol and low-density lipoprotein cholesterol levels in northern Chinese individuals. The vitamin D deficiency-induced increase of cholesterol concentration was mainly due to enhanced cholesterol biosynthesis rather than reduced catabolism. Under vitamin D deficiency, the transcriptional activity of vitamin D receptor (VDR) was decreased, leading to the downregulation of insulin-induced gene-2 (Insig-2) expression and thus its inhibitory role on sterol regulatory element-binding protein 2 activation; 3-hydroxy-3-methylglutaryl-coenzyme A reductase expression was accordingly increased. Vitamin D3 was protective against vitamin D deficiency-induced cholesterol increase by maintaining the transcriptional activity of VDR and Insig-2 expression. CONCLUSION Vitamin D deficiency is associated with the increase of circulating cholesterol in the people of northern China by enhancing hepatic cholesterol biosynthesis, which was linked to the reduction of transcriptional activity of VDR.
Collapse
Affiliation(s)
- Songtao Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yujie He
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Song Lin
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Liuyi Hao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yaxin Ye
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Lin Lv
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Zongxiang Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Huiru Fan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Zhiping Shi
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Jie Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Lixin Na
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yanwen Wang
- Institute for Nutrisciences and Health, National Research Council Canada, Charlottetown, PE, Canada
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
- Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
- Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Zhang Z, Xu C. Mechanisms of calcium intake in lowering serum cholesterol levels. Shijie Huaren Xiaohua Zazhi 2016; 24:505-512. [DOI: 10.11569/wcjd.v24.i4.505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs), a group of disorders of the heart and blood vessels, are the leading cause of death globally. An estimated 17.1 million people die of CVDs each year, more than 40% of whom die from coronary heart disease (CHD). Hypercholesterolemia is a major risk factor for increasing CHD morbidity and mortality, and serum cholesterol level is a key predictor of CHD development. A number of studies have demonstrated that calcium supplement can lower serum cholesterol levels, which means that calcium might play an important role in preventing the development of CVDs, especially CHD. In this paper, the mechanisms of calcium intake in lowering serum cholesterol levels are summarized, including increasing the excretion of bile acids, interfering with cholesterol absorption, inhibiting the absorption of saturated fatty acids, promoting energy metabolism, regulating plasma 1,25(OH)2D levels, affecting blood insulin sensibility and controlling appetite.
Collapse
|
16
|
Gallo L, Faniello MC, Canino G, Tripolino C, Gnasso A, Cuda G, Costanzo FS, Irace C. Serum Calcium Increase Correlates With Worsening of Lipid Profile: An Observational Study on a Large Cohort From South Italy. Medicine (Baltimore) 2016; 95:e2774. [PMID: 26937904 PMCID: PMC4779001 DOI: 10.1097/md.0000000000002774] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Despite the well-documented role of calcium in cell metabolism, its role in the development of cardiovascular disease is still under heavy debate. Several studies suggest that calcium supplementation might be associated with an increased risk of coronary heart disease, whereas others underline a significant effect on lowering high blood pressure and hyperlipidemia. The purpose of this study was to investigate, in a large nonselected cohort from South Italy, if serum calcium levels correlate with lipid values and can therefore be linked to higher individual cardiovascular risk.Eight-thousand-six-hundred-ten outpatients addressed to the Laboratory of Clinical Biochemistry, University of Magna Græcia, Catanzaro, Italy from January 2012 to December 2013 for routine blood tests, were enrolled in the study. Total HDL-, LDL- and non-HDL colesterol, triglycerides, and calcium were determined with standard methods.We observed a significant association between total cholesterol, LDL-cholesterol, HDL-cholesterol, non-HDL cholesterol, triglycerides, and serum calcium in men and postmenopause women. Interestingly, in premenopause women, we only found a direct correlation between serum calcium, total cholesterol, and HDL-cholesterol. Calcium significantly increased while increasing total cholesterol and triglycerides in men and postmenopause women.Our results confirm that progressive increase of serum calcium level correlates with worsening of lipid profile in our study population. Therefore, we suggest that a greater caution should be used in calcium supplement prescription particularly in men and women undergoing menopause, in which an increase of serum lipids is already known to be associated with a higher cardiovascular risk.
Collapse
Affiliation(s)
- Luigia Gallo
- From the Department of Experimental and Clinical Medicine (LG, MCF, CT, AG, Giovanni Cuda, FSC); Department of Medical and Surgical Sciences (Giovanni Canino); and Department of Health Science (CI), Magna Græcia University of Catanzaro, Catanzaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Meng F, Ning H, Sun Z, Huang F, Li Y, Chu X, Lu H, Sun C, Li S. Ursolic acid protects hepatocytes against lipotoxicity through activating autophagy via an AMPK pathway. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
18
|
Shen M, Shi H. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis. Int J Endocrinol 2015; 2015:294278. [PMID: 26491440 PMCID: PMC4600502 DOI: 10.1155/2015/294278] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 02/06/2023] Open
Abstract
The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.
Collapse
Affiliation(s)
- Minqian Shen
- Cell, Molecular, and Structural Biology, Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
| | - Haifei Shi
- Cell, Molecular, and Structural Biology, Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
- *Haifei Shi:
| |
Collapse
|
19
|
Han G, White RE. G-protein-coupled estrogen receptor as a new therapeutic target for treating coronary artery disease. World J Cardiol 2014; 6:367-375. [PMID: 24976908 PMCID: PMC4072826 DOI: 10.4330/wjc.v6.i6.367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/06/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease (CHD) continues to be the greatest mortality risk factor in the developed world. Estrogens are recognized to have great therapeutic potential to treat CHD and other cardiovascular diseases; however, a significant array of potentially debilitating side effects continues to limit their use. Moreover, recent clinical trials have indicated that long-term postmenopausal estrogen therapy may actually be detrimental to cardiovascular health. An exciting new development is the finding that the more recently discovered G-protein-coupled estrogen receptor (GPER) is expressed in coronary arteries-both in coronary endothelium and in smooth muscle within the vascular wall. Accumulating evidence indicates that GPER activation dilates coronary arteries and can also inhibit the proliferation and migration of coronary smooth muscle cells. Thus, selective GPER activation has the potential to increase coronary blood flow and possibly limit the debilitating consequences of coronary atherosclerotic disease. This review will highlight what is currently known regarding the impact of GPER activation on coronary arteries and the potential signaling mechanisms stimulated by GPER agonists in these vessels. A thorough understanding of GPER function in coronary arteries may promote the development of new therapies that would help alleviate CHD, while limiting the potentially dangerous side effects of estrogen therapy.
Collapse
|
20
|
Histidine supplementation alleviates inflammation in the adipose tissue of high-fat diet-induced obese rats via the NF-κB- and PPARγ-involved pathways. Br J Nutr 2014; 112:477-85. [PMID: 24833547 DOI: 10.1017/s0007114514001056] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity is considered to be accompanied by a chronic low-grade inflammatory state that contributes to the occurrence of many chronic diseases. Our previous study has demonstrated that histidine supplementation significantly ameliorates inflammation and oxidative stress in obese women. However, the in vivo potential mechanisms are not known. The present study was conducted to investigate the mechanisms underlying the effects of histidine on inflammation in a high-fat diet (HFD)-induced female obese rat model. An obese model was established in female Sprague–Dawley rats by HFD feeding for 8 weeks and followed by histidine supplementation for another 4 weeks. The results revealed that HFD-increased body weight and HFD-lowered serum histidine concentrations were significantly reversed by histidine supplementation (P< 0·05). In addition, the serum concentrations of TNF-α, IL-6, C-reactive protein (CRP) and malondialdehyde were significantly reduced and those of superoxide dismutase (SOD) were significantly increased by histidine supplementation when compared with those in obese rats (P< 0·05). Correspondingly, the mRNA expressions of TNF-α, IL-6 and CRP in the adipose tissue were significantly down-regulated and that of CuZnSOD was significantly up-regulated by histidine supplementation (P< 0·05). Histidine supplementation significantly reduced the HFD-induced translocation of NF-κB p65 into the nucleus (P= 0·032) by reducing the phosphorylation of the inhibitor of κBα in the adipose tissue. The results also revealed that the expression of adiponectin was markedly increased both in the serum and in the adipose tissue after histidine supplementation, accompanied by the activation of PPARγ (P= 0·021). These findings indicate that histidine is an effective candidate for ameliorating inflammation and oxidative stress in obese individuals via the NF-κB- and PPARγ-involved pathways.
Collapse
|
21
|
Huang Y, He Y, Sun X, He Y, Li Y, Sun C. Maternal high folic acid supplement promotes glucose intolerance and insulin resistance in male mouse offspring fed a high-fat diet. Int J Mol Sci 2014; 15:6298-313. [PMID: 24736781 PMCID: PMC4013629 DOI: 10.3390/ijms15046298] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/03/2014] [Accepted: 03/28/2014] [Indexed: 11/16/2022] Open
Abstract
Maternal nutrition may influence metabolic profiles in offspring. We aimed to investigate the effect of maternal folic acid supplement on glucose metabolism in mouse offspring fed a high-fat diet (HFD). Sixty C57BL/6 female mice were randomly assigned into three dietary groups and fed the AIN-93G diet containing 2 (control), 5 (recommended folic acid supplement, RFolS) or 40 (high folic acid supplement, HFolS) mg folic acid/kg of diet. All male offspring were fed HFD for eight weeks. Physiological, biochemical and genetic variables were measured. Before HFD feeding, developmental variables and metabolic profiles were comparable among each offspring group. However, after eight weeks of HFD feeding, the offspring of HFolS dams (Off-HFolS) were more vulnerable to suffer from obesity (p = 0.009), glucose intolerance (p < 0.001) and insulin resistance (p < 0.001), compared with the controls. Off-HFolS had reduced serum adiponectin concentration, accompanied with decreased adiponectin mRNA level but increased global DNA methylation level in white adipose tissue. In conclusion, our results suggest maternal HFolS exacerbates the detrimental effect of HFD on glucose intolerance and insulin resistance in male offspring, implying that HFolS during pregnancy should be adopted cautiously in the general population of pregnant women to avoid potential deleterious effect on the metabolic diseases in their offspring.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China.
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China.
| | - Xiaowei Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China.
| | - Yujie He
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China.
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
22
|
He L, Qian Y, Ren X, Jin Y, Chang W, Li J, Chen Y, Song X, Tang H, Ding L, Guo D, Yao Y. Total serum calcium level may have adverse effects on serum cholesterol and triglycerides among female university faculty and staffs. Biol Trace Elem Res 2014; 157:191-4. [PMID: 24488790 DOI: 10.1007/s12011-014-9895-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/09/2014] [Indexed: 02/07/2023]
Abstract
Our previous studies showed that serum calcium level may have influence in the blood pressure to older male subjects, but the relationship between serum calcium level and blood lipids is unclear. The aim of this study was to evaluate the relationship between total serum calcium level and blood lipids. In our study, total serum calcium level and blood lipids were measured among 1,075 subjects, with age range of 30-60 years, who were recruited for the routine health screening in 2006. The results showed that serum calcium level was positively correlated with triglyceride and total cholesterol weight, but not HDL-cholesterol and LDL-cholesterol in female subjects (P < 0.05). No correlation was found between total serum calcium level and blood lipids in male subjects (P > 0.05). These findings suggest that a higher total serum calcium level may have a adverse effects on serum cholesterol and triglycerides among female subjects.
Collapse
Affiliation(s)
- Lianping He
- School of Public Health, Wannan Medical College, Wuhu, 241002, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li S, Meng F, Liao X, Wang Y, Sun Z, Guo F, Li X, Meng M, Li Y, Sun C. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats. PLoS One 2014; 9:e86724. [PMID: 24489777 PMCID: PMC3906058 DOI: 10.1371/journal.pone.0086724] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 12/16/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. METHODOLOGY/PRINCIPAL FINDINGS Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. CONCLUSIONS/SIGNIFICANCE These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.
Collapse
Affiliation(s)
- Songtao Li
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, Heilongjiang province, P. R. China
| | - Fanyu Meng
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, Heilongjiang province, P. R. China
| | - Xilu Liao
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, Heilongjiang province, P. R. China
| | - Yemei Wang
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, Heilongjiang province, P. R. China
| | - Zongxiang Sun
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, Heilongjiang province, P. R. China
| | - Fuchuan Guo
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, Heilongjiang province, P. R. China
| | - Xiaoxia Li
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, Heilongjiang province, P. R. China
| | - Man Meng
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, Heilongjiang province, P. R. China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, Heilongjiang province, P. R. China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Harbin Medical University, Harbin, Heilongjiang province, P. R. China
| |
Collapse
|
24
|
Bolland MJ, Grey A, Reid IR. Calcium supplements and cardiovascular risk: 5 years on. Ther Adv Drug Saf 2013; 4:199-210. [PMID: 25114781 PMCID: PMC4125316 DOI: 10.1177/2042098613499790] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Calcium supplements have been widely used by older men and women. However, in little more than a decade, authoritative recommendations have changed from encouraging the widespread use of calcium supplements to stating that they should not be used for primary prevention of fractures. This substantial shift in recommendations has occurred as a result of accumulated evidence of marginal antifracture efficacy, and important adverse effects from large randomized controlled trials of calcium or coadministered calcium and vitamin D supplements. In this review, we discuss this evidence, with a particular focus on increased cardiovascular risk with calcium supplements, which we first described 5 years ago. Calcium supplements with or without vitamin D marginally reduce total fractures but do not prevent hip fractures in community-dwelling individuals. They also cause kidney stones, acute gastrointestinal events, and increase the risk of myocardial infarction and stroke. Any benefit of calcium supplements on preventing fracture is outweighed by increased cardiovascular events. While there is little evidence to suggest that dietary calcium intake is associated with cardiovascular risk, there is also little evidence that it is associated with fracture risk. Therefore, for the majority of people, dietary calcium intake does not require close scrutiny. Because of the unfavorable risk/benefit profile, widespread prescribing of calcium supplements to prevent fractures should be abandoned. Patients at high risk of fracture should be encouraged to take agents with proven efficacy in preventing vertebral and nonvertebral fractures.
Collapse
Affiliation(s)
- Mark J Bolland
- Bone and Joint Research Group, Department of Medicine, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Andrew Grey
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Ian R Reid
- Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|