1
|
Nabil MA, Rychlik L, Nicholson A, Cheung P, Olsovsky GD, Molden J, Tripuraneni A, Hajivandi SS, Banchs JE. Dietary interventions in the management of atrial fibrillation. Front Cardiovasc Med 2024; 11:1418059. [PMID: 39149585 PMCID: PMC11324562 DOI: 10.3389/fcvm.2024.1418059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Atrial fibrillation (AF) represents the most common cardiac arrhythmia with significant morbidity and mortality implications. It is a common cause of hospital admissions, significantly impacts quality of life, increases morbidity and decreases life expectancy. Despite advancements in treatment options, prevalence of AF remains exceptionally high. AF is a challenging disease to manage, not just clinically but also financially. Evidence suggests lifestyle modification, including dietary changes, plays a significant role in the treatment of AF. This review aims to analyze the existing literature on the effects of dietary modifications on the incidence, progression, and outcomes of atrial fibrillation. It examines various dietary components, including alcohol, caffeine, omega-3 polyunsaturated fatty acids and minerals, and their impact on AF incidence, progression, and outcomes. The evidence surrounding the effects of dietary patterns, such as the Mediterranean and low carbohydrate diets, on AF is also evaluated. Overall, this review underscores the importance of dietary interventions as part of a comprehensive approach to AF management and highlights the need for further research in this emerging field.
Collapse
Affiliation(s)
- Muhammad Ahad Nabil
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Round Rock, TX, United States
| | - Leanne Rychlik
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| | - Audrey Nicholson
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Round Rock, TX, United States
| | - Peter Cheung
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Round Rock, TX, United States
| | - Gregory D Olsovsky
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| | - Jaime Molden
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| | - Ajay Tripuraneni
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| | - Shayan-Salehi Hajivandi
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Round Rock, TX, United States
| | - Javier E Banchs
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| |
Collapse
|
2
|
Kohansal E, Askarinejad A, MozafaryBazargany M, Sabahizadeh A, Pakmehr S, Haghjoo M. Assessing the impact of omega-3 fatty acids on ventricular tachyarrhythmia and survival in patients with ICDs: A systematic review and meta-analysis. IJC HEART & VASCULATURE 2024; 52:101397. [PMID: 38584673 PMCID: PMC10990970 DOI: 10.1016/j.ijcha.2024.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Background Recent studies investigating the effects of fish oil on shocks administered by ICDs in patients with ventricular tachycardias produced inconclusive results. This systematic review aims to evaluate the effectiveness of omega-3 polyunsaturated fatty acids in lowering the risk of life-threatening VTs among individuals with implantable cardioverter-defibrillators. Methods We searched five databases, including Central, PubMed, EMBASE, Web of Science, and Scopus, for studies evaluating the efficacy of omega-3 polyunsaturated fatty acids (PUFAs) for the prevention of ICD events for VT or VF, published up to December 1, 2023. Results Four trials were finally included in the study. The pooled risk ratios for mortality and ICD events were 0.87 (95% CI:0.58-1.32) and 0.75 (95% CI:0.48-1.18), respectively. Conclusion No significant effect was discovered to support the antiarrhythmic properties or survival advantages of n-3 polyunsaturated fatty acids (PUFA) in individuals with implanted implantable cardioverter-defibrillators (ICD).
Collapse
Affiliation(s)
- Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Askarinejad
- Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Majid Haghjoo
- Department of Cardiac Electrophysiology, Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
- Cardiac Electrophysiology Research Center, Rajaie Cardiovascular Medical and Research Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Lefort B, Gélinas R, Forest A, Bouchard B, Daneault C, Robillard Frayne I, Roy J, Oger C, Greffard K, Galano JM, Durand T, Labarthe F, Bilodeau JF, Ruiz M, Des Rosiers C. Remodeling of lipid landscape in high fat fed very-long chain acyl-CoA dehydrogenase null mice favors pro-arrhythmic polyunsaturated fatty acids and their downstream metabolites. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166843. [PMID: 37558007 DOI: 10.1016/j.bbadis.2023.166843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Very-long chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial step of mitochondrial long chain (LC) fatty acid β-oxidation (FAO). Inherited VLCAD deficiency (VLCADD) predisposes to neonatal arrhythmias whose pathophysiology is still not understood. We hypothesized that VLCADD results in global disruption of cardiac complex lipid homeostasis, which may set conditions predisposing to arrhythmia. To test this, we assessed the cardiac lipidome and related molecular markers in seven-month-old VLCAD-/- mice, which mimic to some extent the human cardiac phenotype. Mice were sacrificed in the fed or fasted state after receiving for two weeks a chow or a high-fat diet (HFD), the latter condition being known to worsen symptoms in human VLCADD. Compared to their littermate counterparts, HFD/fasted VLCAD-/- mouse hearts displayed the following lipid alterations: (1) Lower LC, but higher VLC-acylcarnitines accumulation, (2) higher levels of arachidonic acid (AA) and lower docosahexaenoic acid (DHA) contents in glycerophospholipids (GPLs), as well as (3) corresponding changes in pro-arrhythmogenic AA-derived isoprostanes and thromboxane B2 (higher), and anti-arrythmogenic DHA-derived neuroprostanes (lower). These changes were associated with remodeling in the expression of gene or protein markers of (1) GPLs remodeling: higher calcium-dependent phospholipase A2 and lysophosphatidylcholine-acyltransferase 2, (2) calcium handling perturbations, and (3) endoplasmic reticulum stress. Altogether, these results highlight global lipid dyshomeostasis beyond FAO in VLCAD-/- mouse hearts, which may set conditions predisposing the hearts to calcium mishandling and endoplasmic reticulum stress and thereby may contribute to the pathogenesis of arrhythmias in VLCADD in mice as well as in humans.
Collapse
Affiliation(s)
- Bruno Lefort
- Montreal Heart Institute Research Centre, Montreal, Canada; Institut des Cardiopathies Congénitales de Tours et FHU Precicare, CHU Tours, Tours, France; INSERM UMR 1069 et Université François Rabelais, Tours, France
| | - Roselle Gélinas
- Montreal Heart Institute Research Centre, Montreal, Canada; Present address: CHU Ste-Justine Research Center, Montreal, Quebec, Canada
| | - Anik Forest
- Montreal Heart Institute Research Centre, Montreal, Canada
| | | | | | | | - Jérôme Roy
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France; INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Karine Greffard
- Axe endocrinologie et néphrologie, CHU de Québec, Université Laval, Québec, Canada
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Jean-François Bilodeau
- Axe endocrinologie et néphrologie, CHU de Québec, Université Laval, Québec, Canada; Department of Nutrition, Faculty of medicine, Université Laval, Quebec, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute Research Centre, Montreal, Canada; Department of Nutrition, Faculty of medicine, Université de Montréal, Montreal, Canada.
| | - Christine Des Rosiers
- Montreal Heart Institute Research Centre, Montreal, Canada; Department of Nutrition, Faculty of medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
4
|
Goldberg IJ, Gjini J, Fisher EA. Big Fish or No Fish; Eicosapentaenoic Acid and Cardiovascular Disease. Endocrinol Metab Clin North Am 2022; 51:625-633. [PMID: 35963632 DOI: 10.1016/j.ecl.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benefits of omega 3 fatty acids for cardiovascular and other diseases have been touted for more than 50 years. The one clear clinical benefit of these lipids is the reduction of circulating levels of triglycerides, making them a useful approach for the prevention of pancreatitis in severely hypertriglyceridemic patients. After a series of spectacularly failed clinical trials that were criticized for the choice of subjects and doses of omega 3 fatty acids used, Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT) using a high dose of icosapent ethyl (IPE) reported a reduction in cardiovascular disease (CVD) events. However, this trial has generated controversy due to the use of mineral oil in the control group and the associated side effects of the IPA. This review will focus on the following topics: What are the epidemiologic data suggesting a benefit of omega 3 fatty acids? What might be the mechanisms for these benefits? Why have the clinical trials failed to resolve whether these fatty acids provide benefit? What choices should a clinician consider?
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, 435 First Avenue, SB 617, New York, NY 10016, USA.
| | - Jana Gjini
- Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, 435 First Avenue, SB 617, New York, NY 10016, USA
| | - Edward A Fisher
- Division of Cardiology and Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, 435 First Avenue, SB 704, New York, NY 10016, USA
| |
Collapse
|
5
|
Musazadeh V, Kavyani Z, Naghshbandi B, Dehghan P, Vajdi M. The beneficial effects of omega-3 polyunsaturated fatty acids on controlling blood pressure: An umbrella meta-analysis. Front Nutr 2022; 9:985451. [PMID: 36061895 PMCID: PMC9435313 DOI: 10.3389/fnut.2022.985451] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Several meta-analyses have revealed that n-3 PUFAs can lower blood pressure, but the findings are conflicting. In this regard, the present umbrella meta-analysis aimed was performed to clarify whether n-3 PUFAs have effects on blood pressure. PubMed, Scopus, Embase, Web of Science, and Google Scholar were used as international databases from inception to May 2022. To examine the effects of n-3 PUFA supplementation on blood pressure, a random-effects model was applied. The leave-one-out method was performed for the sensitivity analysis. The pooled estimate of 10 meta-analyses with 20 effect sizes revealed significant reductions in both systolic (ES = -1.19 mmHg; 95% CI: -1.76, -0.62, p < 0.001) and diastolic blood pressure (ES = -0.91 mmHg, 95% CI: -1.35, -0.47; p < 0.001) following n-3 PUFAs supplementation. In studies with a sample size of ≤ 400 participants and a mean age over 45, SBP and DBP were found to be substantially reduced. Overall, this umbrella meta-analysis indicates that n-3 PUFAs supplementation might play a role in improving DBP and SBP.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Naghshbandi
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parvin Dehghan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Affiliation(s)
- Michelle Samuel
- Research Center and Department of Medicine, Montreal Heart Institute, Université de Montréal, Canada (M.S., S.N.)
| | - Stanley Nattel
- Research Center and Department of Medicine, Montreal Heart Institute, Université de Montréal, Canada (M.S., S.N.).,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (S.N.).,Institut Hospitalo-Universitaire - l'Institut de Rythmologie et Modélisation Cardiaque (IHU LIRYC) and Fondation Bordeaux Université, France (S.N.)
| |
Collapse
|
7
|
Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity. Nutrients 2021; 13:nu13103483. [PMID: 34684484 PMCID: PMC8540093 DOI: 10.3390/nu13103483] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) are strongly reactive chemical entities that include oxygen regulated by enzymatic and non-enzymatic antioxidant defense mechanisms. ROS contribute significantly to cell homeostasis in the heart by regulating cell proliferation, differentiation, and excitation-contraction coupling. When ROS generation surpasses the ability of the antioxidant defense mechanisms to buffer them, oxidative stress develops, resulting in cellular and molecular disorders and eventually in heart failure. Oxidative stress is a critical factor in developing hypoxia- and ischemia-reperfusion-related cardiovascular disorders. This article aimed to discuss the role of oxidative stress in the pathophysiology of cardiac diseases such as hypertension and endothelial dysfunction. This review focuses on the various clinical events and oxidative stress associated with cardiovascular pathophysiology, highlighting the benefits of new experimental treatments such as creatine supplementation, omega-3 fatty acids, microRNAs, and antioxidant supplements in addition to physical exercise
Collapse
|
8
|
Liu W, Liu J, Xing S, Li X, Han L, Liu K, Wei T, Zhou M. Marine Phospholipids from Fishery By‐Products Attenuate Atherosclerosis. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenjie Liu
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| | - Jianmin Liu
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| | - Shu Xing
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| | - Xiaobin Li
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) 28799 Jingshidong Road Jinan Shandong 250103 China
| | - Liwen Han
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) 28799 Jingshidong Road Jinan Shandong 250103 China
| | - Kechun Liu
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) 28799 Jingshidong Road Jinan Shandong 250103 China
| | - Tao Wei
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| | - Mingyang Zhou
- School of Chemistry and Chemical Engineering Qilu University of Technology (Shandong Academy of Sciences) # 3501 Daxue Road Jinan Shandong 250353 China
| |
Collapse
|
9
|
Zirpoli H, Chang CL, Carpentier YA, Michael-Titus AT, Ten VS, Deckelbaum RJ. Novel Approaches for Omega-3 Fatty Acid Therapeutics: Chronic Versus Acute Administration to Protect Heart, Brain, and Spinal Cord. Annu Rev Nutr 2020; 40:161-187. [PMID: 32966188 DOI: 10.1146/annurev-nutr-082018-124539] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article reviews novel approaches for omega-3 fatty acid (FA) therapeutics and the linked molecular mechanisms in cardiovascular and central nervous system (CNS) diseases. In vitro and in vivo research studies indicate that omega-3 FAs affect synergic mechanisms that include modulation of cell membrane fluidity, regulation of intracellular signaling pathways, and production of bioactive mediators. We compare how chronic and acute treatments with omega-3 FAs differentially trigger pathways of protection in heart, brain, and spinal cord injuries. We also summarize recent omega-3 FA randomized clinical trials and meta-analyses and discuss possible reasons for controversial results, with suggestions on improving the study design for future clinical trials. Acute treatment with omega-3 FAs offers a novel approach for preserving cardiac and neurological functions, and the combinations of acute treatment with chronic administration of omega-3 FAs might represent an additional therapeutic strategy for ameliorating adverse cardiovascular and CNS outcomes.
Collapse
Affiliation(s)
- Hylde Zirpoli
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Chuchun L Chang
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Yvon A Carpentier
- Clinical Nutrition Unit, Université Libre de Bruxelles, 1050 Brussels, Belgium.,Nutrition Lipid Developments, SPRL, 1050 Brussels, Belgium
| | - Adina T Michael-Titus
- Center for Neuroscience, Surgery, and Trauma, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Vadim S Ten
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
10
|
Figueroa VA, Jara O, Oliva CA, Ezquer M, Ezquer F, Retamal MA, Martínez AD, Altenberg GA, Vargas AA. Contribution of Connexin Hemichannels to the Decreases in Cell Viability Induced by Linoleic Acid in the Human Lens Epithelial Cells (HLE-B3). Front Physiol 2020; 10:1574. [PMID: 32038277 PMCID: PMC6984129 DOI: 10.3389/fphys.2019.01574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 12/16/2019] [Indexed: 01/16/2023] Open
Abstract
Connexin (Cx) proteins form gap junction channels (GJC) and hemichannels that a allow bidirectional flow of ions and metabolites between the cytoplasm and extracellular space, respectively. Under physiological conditions, hemichannels have a very low probability of opening, but in certain pathologies, hemichannels activity can increase and induce and/or accelerate cell death. Several mechanisms control hemichannels activity, including phosphorylation and oxidation (i.e., S-nitrosylation). Recently, the effect of polyunsaturated fatty acids (PUFAs) such as linoleic acid (LA), were found to modulate Cxs. It has been seen that LA increase cell death in bovine and human lens cells. The lens is a structure allocated in the eye that highly depends on Cx for the metabolic coupling between its cells, a condition necessary for its transparency. Therefore, we hypothesized that LA induces lens cells death by modulating hemichannel activity. In this work, we characterized the effect of LA on hemichannel activity and survival of HLE-B3 cells (a human lens epithelial cell line). We found that HLE-B3 cells expresses Cx43, Cx46, and Cx50 and can form functional hemichannels in their plasma membrane. The extracellular exposure to 10–50 μM of LA increases hemichannels activity (dye uptake) in a concentration-dependent manner, which was reduced by Cx-channel blockers, such as the Cx-mimetic peptide Gap27 and TATGap19, La3+, carbenoxolone (CBX) and the Akt kinase inhibitor. Additionally, LA increases intracellular calcium, which is attenuated in the presence of TATGap19, a specific Cx43-hemichannel inhibitor. Finally, the long exposure of HLE-B3 cells to LA 20 and 50 μM, reduced cell viability, which was prevented by CBX. Moreover, LA increased the proportion of apoptotic HLE-B3 cells, effect that was prevented by the Cx-mimetic peptide TAT-Gap19 but not by Akt inhibitor. Altogether, these findings strongly suggest a contribution of hemichannels opening in the cell death induced by LA in HLE-B3 cells. These cells can be an excellent tool to develop pharmacological studies in vitro.
Collapse
Affiliation(s)
- Vania A Figueroa
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Oscar Jara
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| | - Carolina A Oliva
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Mauricio A Retamal
- Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Aníbal A Vargas
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
11
|
Filipovic MG, Aeschbacher S, Reiner MF, Stivala S, Gobbato S, Bonetti N, Risch M, Risch L, Camici GG, Luescher TF, von Schacky C, Conen D, Beer JH. Whole blood omega-3 fatty acid concentrations are inversely associated with blood pressure in young, healthy adults. J Hypertens 2018; 36:1548-1554. [PMID: 29570511 PMCID: PMC6085127 DOI: 10.1097/hjh.0000000000001728] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/26/2018] [Accepted: 02/23/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Omega-3 fatty acids (n - 3 FA) may have blood pressure (BP)-lowering effects in untreated hypertensive and elderly patients. The effect of n - 3 FA on BP in young, healthy adults remains unknown. The Omega-3 Index reliably reflects an individuals' omega-3 status. We hypothesized that the Omega-3 Index is inversely associated with BP levels in young healthy adults. METHODS The current study (n = 2036) is a cross-sectional study investigating the baseline characteristics of a cohort, which includes healthy adults, age 25-41 years. Individuals with cardiovascular disease, known diabetes or a BMI higher than 35 kg/m were excluded. The Omega-3 Index was determined in whole blood using gas chromatography. Association with office and 24-h BP was assessed using multivariable linear regression models adjusted for potential confounders. RESULTS Median Omega-3 Index was 4.58% (interquartile range 4.08; 5.25). Compared with individuals in the lowest Omega-3 Index quartile, individuals in the highest had a SBP and DBP that was 4 and 2 mmHg lower, respectively (P < 0.01). A significant linear inverse relationship of the Omega-3 Index with 24-h and office BP was observed. Per 1-U increase in log-transformed Omega-3 Index the lowering in BP (given as multivariable adjusted β coefficients; 95% confidence interval) was -2.67 mmHg (-4.83; -0.51; P = 0.02) and -2.30 mmHg (-3.92; -0.68; P = 0.005) for 24-h SBP and DBP, respectively. CONCLUSION A higher Omega-3 Index is associated with statistically significant, clinically relevant lower SBP and DBP levels in normotensive young and healthy individuals. Diets rich in n - 3 FA may be a strategy for primary prevention of hypertension.
Collapse
Affiliation(s)
- Mark G. Filipovic
- Department of Internal Medicine, Cantonal Hospital of Baden, Baden
- Center for Molecular Cardiology, University of Zurich, Zurich
| | - Stefanie Aeschbacher
- Division of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Martin F. Reiner
- Department of Internal Medicine, Cantonal Hospital of Baden, Baden
- Center for Molecular Cardiology, University of Zurich, Zurich
| | - Simona Stivala
- Center for Molecular Cardiology, University of Zurich, Zurich
| | - Sara Gobbato
- Center for Molecular Cardiology, University of Zurich, Zurich
| | - Nicole Bonetti
- Center for Molecular Cardiology, University of Zurich, Zurich
| | - Martin Risch
- Labormedizinisches Zentrum Dr Risch, Vaduz, Liechtenstein
- Division of Laboratory Medicine, Cantonal Hospital Graubünden, Chur
| | - Lorenz Risch
- Labormedizinisches Zentrum Dr Risch, Vaduz, Liechtenstein
- Department of Laboratory Medicine, Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Berne, Berne, Switzerland
- Department of Preventative Cardiology, Private University Triesen, Triesen, Liechtenstein
| | | | - Thomas F. Luescher
- Department of Cardiology, Royal Brompton & Harefield Hospitals, Imperial College, London, UK
| | - Clemens von Schacky
- Department of Preventive Cardiology, Ludwig-Maximilians University, Munich, Germany
| | - David Conen
- Division of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Juerg H. Beer
- Department of Internal Medicine, Cantonal Hospital of Baden, Baden
- Center for Molecular Cardiology, University of Zurich, Zurich
| |
Collapse
|
12
|
The Role of n-3 Long Chain Polyunsaturated Fatty Acids in Cardiovascular Disease Prevention, and Interactions with Statins. Nutrients 2018; 10:nu10060775. [PMID: 29914111 PMCID: PMC6024670 DOI: 10.3390/nu10060775] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 01/08/2023] Open
Abstract
Decreases in global cardiovascular disease (CVD) mortality and morbidity in recent decades can be partly attributed to cholesterol reduction through statin use. n-3 long chain polyunsaturated fatty acids are recommended by some authorities for primary and secondary CVD prevention, and for triglyceride reduction. The residual risk of CVD that remains after statin therapy may potentially be reduced by n-3 long chain polyunsaturated fatty acids. However, the effects of concomitant use of statins and n-3 long chain polyunsaturated fatty acids are not well understood. Pleiotropic effects of statins and n-3 long chain polyunsaturated fatty acids overlap. For example, cytochrome P450 enzymes that metabolize statins may affect n-3 long chain polyunsaturated fatty acid metabolism and vice versa. Clinical and mechanistic study results show both synergistic and antagonistic effects of statins and n-3 long chain polyunsaturated fatty acids when used in combination.
Collapse
|
13
|
Manuelli M, Della Guardia L, Cena H. Enriching Diet with n-3 PUFAs to Help Prevent Cardiovascular Diseases in Healthy Adults: Results from Clinical Trials. Int J Mol Sci 2017; 18:ijms18071552. [PMID: 28718800 PMCID: PMC5536040 DOI: 10.3390/ijms18071552] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/30/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are believed to be important for cardiovascular health. Many investigations have been carried out in an attempt to examine the effect of n-3 PUFAs intake, in the form of supplementation or fortified foods, for the management of cardiovascular disease (CVD) and risk factors for CVD, whereas less is known about the effect on healthy individuals. The present study reviews the available literature in order to examine the relationship between n-3 PUFAs intake, either via supplementation or enriched food, and the prevention of CVD among healthy adults. Interventional clinical trials on subjects aged >18 years old with none of the established risk factors for CVD have been considered for review. n-3 PUFAs supplementation or enriched food may positively regulate triglycerides and some lipoprotein subsets, as well as several vascular and coagulation parameters, even in healthy patients, presenting no risk factors for CVD, suggesting a protective effect. Diet enrichment with omega-3 is likely to be useful in helping to lower the risk of developing CVD in healthy individuals, but still offers no strong evidence of a tangible benefit on a population level. Additional studies are needed to determine the optimal daily intake, especially to prevent the unfavorable effects of PUFAs over-consumption.
Collapse
Affiliation(s)
- Matteo Manuelli
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human Nutrition, University of Pavia, 27100 Pavia PV, Italy.
| | - Lucio Della Guardia
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human Nutrition, University of Pavia, 27100 Pavia PV, Italy.
| | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, Unit of Human Nutrition, University of Pavia, 27100 Pavia PV, Italy.
| |
Collapse
|
14
|
Yalta T, Yalta K. Systemic Inflammation and Arrhythmogenesis: A Review of Mechanistic and Clinical Perspectives. Angiology 2017; 69:288-296. [DOI: 10.1177/0003319717709380] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the recent decades, systemic inflammation, as a clinical phenomenon, has been the focus of extensive research particularly with regard to its potential association with a variety of cardiovascular diseases including atherogenesis and acute coronary syndromes. Within this context, there also exists a potential link between systemic inflammation and cardiac arrhythmogenesis in various aspects. Accordingly, systemic inflammation response as measured with inflammation markers (cytokines, etc) has been investigated in the setting of well-known cardiac arrhythmias including atrial fibrillation and ventricular tachycardia. Based on current literature, clinical utility of these markers might potentially yield important prognostic implications in the setting of certain arrhythmogenic conditions. On the other hand, there exists limited data regarding therapeutic implications including clinical benefit of primary anti-inflammatory agents (corticosteroids, colchicine, etc) in the setting of arrhythmia management. The present review primarily aims to discuss potential triggers and fundamental mechanisms of inflammation-related arrhythmias along with a particular emphasis on clinical implications of systemic inflammation in the setting of cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Tulin Yalta
- Pathology Department, Trakya Üniversity, Edirne, Turkey
| | - Kenan Yalta
- Cardiology Department, Trakya Üniversity, Edirne, Turkey
| |
Collapse
|
15
|
Egan Benova T, Szeiffova Bacova B, Viczenczova C, Diez E, Barancik M, Tribulova N. Protection of cardiac cell-to-cell coupling attenuate myocardial remodeling and proarrhythmia induced by hypertension. Physiol Res 2017; 65 Suppl 1:S29-42. [PMID: 27643938 DOI: 10.33549/physiolres.933391] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gap junction connexin channels are important determinants of myocardial conduction and synchronization that is crucial for coordinated heart function. One of the main risk factors for cardiovascular events that results in heart attack, congestive heart failure, stroke as well as sudden arrhythmic death is hypertension. Mislocalization and/or dysfunction of specific connexin-43 channels due to hypertension-induced myocardial remodeling have been implicated in the occurrence of life-threatening arrhythmias and heart failure in both, humans as well as experimental animals. Recent studies suggest that down-regulation of myocardial connexin-43, its abnormal distribution and/or phosphorylation might be implicated in this process. On the other hand, treatment of hypertensive animals with cardioprotective drugs (e.g. statins) or supplementation with non-pharmacological compounds, such as melatonin, omega-3 fatty acids and red palm oil protects from lethal arrhythmias. The antiarrhythmic effects are attributed to the attenuation of myocardial connexin-43 abnormalities associated with preservation of myocardial architecture and improvement of cardiac conduction. Findings uncover novel mechanisms of cardioprotective (antihypertensive and antiarrhythmic) effects of compounds that are used in clinical settings. Well-designed trials are needed to explore the antiarrhythmic potential of these compounds in patients suffering from hypertension.
Collapse
Affiliation(s)
- T Egan Benova
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
16
|
Duttaroy AK. Docosahexaenoic acid supports feto-placental growth and protects cardiovascular and cognitive function: A mini review. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Asim K. Duttaroy
- Faculty of Medicine, Department of Nutrition; Institute of Basic Medical Sciences; University of Oslo; Norway
| |
Collapse
|
17
|
Folino A, Sprio AE, Di Scipio F, Berta GN, Rastaldo R. Alpha-linolenic acid protects against cardiac injury and remodelling induced by beta-adrenergic overstimulation. Food Funct 2015; 6:2231-9. [DOI: 10.1039/c5fo00034c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Linolenic acid (ALA)-enriched diet prevented isoproterenol (ISO)-induced fibrosis in the ventricular myocardium.
Collapse
Affiliation(s)
- A. Folino
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| | - A. E. Sprio
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| | - F. Di Scipio
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| | - G. N. Berta
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| | - R. Rastaldo
- Department of Clinical and Biological Sciences
- “S. Luigi Gonzaga” Hospital
- University of Turin
- 10043 Orbassano
- Italy
| |
Collapse
|