1
|
Feaster TK, Ewoldt JK, Avila A, Casciola M, Narkar A, Chen CS, Blinova K. Nonclinical evaluation of chronic cardiac contractility modulation on 3D human engineered cardiac tissues. J Cardiovasc Electrophysiol 2024; 35:895-905. [PMID: 38433304 DOI: 10.1111/jce.16222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Cardiac contractility modulation (CCM) is a medical device-based therapy delivering non-excitatory electrical stimulations to the heart to enhance cardiac function in heart failure (HF) patients. The lack of human in vitro tools to assess CCM hinders our understanding of CCM mechanisms of action. Here, we introduce a novel chronic (i.e., 2-day) in vitro CCM assay to evaluate the effects of CCM in a human 3D microphysiological system consisting of engineered cardiac tissues (ECTs). METHODS Cryopreserved human induced pluripotent stem cell-derived cardiomyocytes were used to generate 3D ECTs. The ECTs were cultured, incorporating human primary ventricular cardiac fibroblasts and a fibrin-based gel. Electrical stimulation was applied using two separate pulse generators for the CCM group and control group. Contractile properties and intracellular calcium were measured, and a cardiac gene quantitative PCR screen was conducted. RESULTS Chronic CCM increased contraction amplitude and duration, enhanced intracellular calcium transient amplitude, and altered gene expression related to HF (i.e., natriuretic peptide B, NPPB) and excitation-contraction coupling (i.e., sodium-calcium exchanger, SLC8). CONCLUSION These data represent the first study of chronic CCM in a 3D ECT model, providing a nonclinical tool to assess the effects of cardiac electrophysiology medical device signals complementing in vivo animal studies. The methodology established a standardized 3D ECT-based in vitro testbed for chronic CCM, allowing evaluation of physiological and molecular effects on human cardiac tissues.
Collapse
Affiliation(s)
- Tromondae K Feaster
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jourdan K Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Anna Avila
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Maura Casciola
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Akshay Narkar
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Ksenia Blinova
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Mascarenhas L, Downey M, Schwartz G, Adabag S. Antiarrhythmic effects of metformin. Heart Rhythm O2 2024; 5:310-320. [PMID: 38840768 PMCID: PMC11148504 DOI: 10.1016/j.hroo.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Atrial fibrillation/flutter (AF) is a major public health problem and is associated with stroke, heart failure, dementia, and death. It is estimated that 20%-30% of Americans will develop AF at some point in their life. Current medications to prevent AF have limited efficacy and significant adverse effects. Newer and safer therapies to prevent AF are needed. Ventricular arrhythmias are less prevalent than AF but may have significant consequences including sudden cardiac death. Metformin is the most prescribed, first-line medication for treatment of diabetes mellitus (DM). It decreases hepatic glucose production but also reduces inflammation and oxidative stress. Experimental studies have shown that metformin improves metabolic, electrical, and histologic risk factors associated with AF and ventricular arrhythmias. Furthermore, in large clinical observational studies, metformin has been associated with a reduced risk of AF in people with DM. These data suggest that metformin may have antiarrhythmic properties and may be a candidate to be repurposed as a medication to prevent cardiac arrhythmias. In this article, we review the clinical observational and experimental evidence for the association between metformin and cardiac arrhythmias. We also discuss the potential antiarrhythmic mechanisms underlying this association. Repurposing a well-tolerated, safe, and inexpensive medication to prevent cardiac arrhythmias has significant positive public health implications.
Collapse
Affiliation(s)
- Lorraine Mascarenhas
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Michael Downey
- Department of Cardiology, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Gregory Schwartz
- Cardiology Section, Rocky Mountain Regional VA Medical Center and University of Colorado School of Medicine, Aurora, Colorado
| | - Selcuk Adabag
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Cardiology, Minneapolis Veterans Affairs Medical Center and University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
3
|
Feaster TK, Feric N, Pallotta I, Narkar A, Casciola M, Graziano MP, Aschar-Sobbi R, Blinova K. Acute effects of cardiac contractility modulation stimulation in conventional 2D and 3D human induced pluripotent stem cell-derived cardiomyocyte models. Front Physiol 2022; 13:1023563. [PMID: 36439258 PMCID: PMC9686332 DOI: 10.3389/fphys.2022.1023563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Cardiac contractility modulation (CCM) is a medical device therapy whereby non-excitatory electrical stimulations are delivered to the myocardium during the absolute refractory period to enhance cardiac function. We previously evaluated the effects of the standard CCM pulse parameters in isolated rabbit ventricular cardiomyocytes and 2D human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) monolayers, on flexible substrate. In the present study, we sought to extend these results to human 3D microphysiological systems to develop a robust model to evaluate various clinical CCM pulse parameters in vitro. HiPSC-CMs were studied in conventional 2D monolayer format, on stiff substrate (i.e., glass), and as 3D human engineered cardiac tissues (ECTs). Cardiac contractile properties were evaluated by video (i.e., pixel) and force-based analysis. CCM pulses were assessed at varying electrical ‘doses’ using a commercial pulse generator. A robust CCM contractile response was observed for 3D ECTs. Under comparable conditions, conventional 2D monolayer hiPSC-CMs, on stiff substrate, displayed no contractile response. 3D ECTs displayed enhanced contractile properties including increased contraction amplitude (i.e., force), and accelerated contraction and relaxation slopes under standard acute CCM stimulation. Moreover, 3D ECTs displayed enhanced contractility in a CCM pulse parameter-dependent manner by adjustment of CCM pulse delay, duration, amplitude, and number relative to baseline. The observed acute effects subsided when the CCM stimulation was stopped and gradually returned to baseline. These data represent the first study of CCM in 3D hiPSC-CM models and provide a nonclinical tool to assess various CCM device signals in 3D human cardiac tissues prior to in vivo animal studies. Moreover, this work provides a foundation to evaluate the effects of additional cardiac medical devices in 3D ECTs.
Collapse
Affiliation(s)
- Tromondae K. Feaster
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Nicole Feric
- Valo Health Inc, Alexandria Center for Life Sciences, New York, NY, United States
| | - Isabella Pallotta
- Valo Health Inc, Alexandria Center for Life Sciences, New York, NY, United States
| | - Akshay Narkar
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Maura Casciola
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Michael P. Graziano
- Valo Health Inc, Alexandria Center for Life Sciences, New York, NY, United States
| | - Roozbeh Aschar-Sobbi
- Valo Health Inc, Alexandria Center for Life Sciences, New York, NY, United States
| | - Ksenia Blinova
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
- *Correspondence: Ksenia Blinova,
| |
Collapse
|
4
|
Feaster TK, Casciola M, Narkar A, Blinova K. Acute effects of cardiac contractility modulation on human induced pluripotent stem cell-derived cardiomyocytes. Physiol Rep 2021; 9:e15085. [PMID: 34729935 PMCID: PMC8564440 DOI: 10.14814/phy2.15085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiac contractility modulation (CCM) is an intracardiac therapy whereby nonexcitatory electrical simulations are delivered during the absolute refractory period of the cardiac cycle. We previously evaluated the effects of CCM in isolated adult rabbit ventricular cardiomyocytes and found a transient increase in calcium and contractility. In the present study, we sought to extend these results to human cardiomyocytes using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to develop a robust model to evaluate CCM in vitro. HiPSC-CMs (iCell Cardiomyocytes2 , Fujifilm Cellular Dynamic, Inc.) were studied in monolayer format plated on flexible substrate. Contractility, calcium handling, and electrophysiology were evaluated by fluorescence- and video-based analysis (CellOPTIQ, Clyde Biosciences). CCM pulses were applied using an A-M Systems 4100 pulse generator. Robust hiPSC-CMs response was observed at 14 V/cm (64 mA) for pacing and 28 V/cm (128 mA, phase amplitude) for CCM. Under these conditions, hiPSC-CMs displayed enhanced contractile properties including increased contraction amplitude and faster contraction kinetics. Likewise, calcium transient amplitude increased, and calcium kinetics were faster. Furthermore, electrophysiological properties were altered resulting in shortened action potential duration (APD). The observed effects subsided when the CCM stimulation was stopped. CCM-induced increase in hiPSC-CMs contractility was significantly more pronounced when extracellular calcium concentration was lowered from 2 mM to 0.5 mM. This study provides a comprehensive characterization of CCM effects on hiPSC-CMs. These data represent the first study of CCM in hiPSC-CMs and provide an in vitro model to assess physiologically relevant mechanisms and evaluate safety and effectiveness of future cardiac electrophysiology medical devices.
Collapse
Affiliation(s)
- Tromondae K. Feaster
- Office of Science and Engineering LaboratoriesCenter for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Maura Casciola
- Office of Science and Engineering LaboratoriesCenter for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Akshay Narkar
- Office of Science and Engineering LaboratoriesCenter for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ksenia Blinova
- Office of Science and Engineering LaboratoriesCenter for Devices and Radiological HealthUS Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
5
|
Matta M, Devecchi C, DE Vecchi F, Barbonaglia L, Gravellone M, Occhetta E, Rametta F. Cardiac contractility modulation in left ventricular systolic dysfunction: one-year experience in a pilot study and design of a prospective registry. Minerva Cardiol Angiol 2020; 69:15-24. [PMID: 32657553 DOI: 10.23736/s2724-5683.20.05219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cardiac contractility modulation (CCM) is a treatment option for patients suffering symptomatic chronic heart failure (CHF) with reduced left ventricular ejection fraction (LVEF) who are not eligible for cardiac resynchronization. Data on mid-term follow-up are limited to small observational studies. The aim of this study was to assess the impact of CCM on quality of life, symptoms, exercise tolerance and left ventricular function in patients with CHF and moderate-to-severe left ventricular systolic dysfunction. METHODS Patients suffering CHF with LVEF <45% and NYHA class >II despite optimal medical therapy, underwent CCM implantation. Enrolled patients underwent baseline and 3, 6 and 12-months evaluation with ECG, echocardiogram, clinical assessment, 6-minute walking test and Minnesota Living with Heart Failure Questionnaire (MLWHFQ). RESULTS Ten patients underwent CCM implantation. All patients were actively treated with the optimal pharmacological therapy as tolerated and had at least one hospitalization for worsening heart failure during the previous year. After a mean follow-up of 15 months, 9 patients were alive, while one patient died for worsening heart failure precipitated by pneumonia. Among the remaining 9 patients, LVEF improved non-significantly from 29.4±8% to 32.2±10% (P=0.092), 6-minute walking test distance improved from 179±73 m to 304±99 m (P<0.001), NYHA class reduced from 3.0±0.4 to 1.6±0.5 (P=0.003) and MLWHFQ score improved from 59.6±49 to 34.2±32 (P=0.037). Only 2 patients have been hospitalized during the 12 months. Overall, a net clinical benefit was detected in 6 out of 9 patients. CONCLUSIONS CCM could be effective in improving quality of life, symptoms and exercise tolerance, and reduces hospitalizations in patients with symptomatic CHF on top of optimal medical and electrical therapy. A prospective registry has been designed to identify the subsets of patients gaining more benefit, and to assess the long-term effect of CCM on those clinical endpoints.
Collapse
Affiliation(s)
- Mario Matta
- Division of Cardiology, Sant'Andrea Hospital, Vercelli, Italy -
| | - Chiara Devecchi
- Division of Cardiology, Sant'Andrea Hospital, Vercelli, Italy
| | | | | | | | - Eraldo Occhetta
- Division of Cardiology, Sant'Andrea Hospital, Vercelli, Italy
| | | |
Collapse
|
6
|
Allen E, Coote JH, Grubb BD, Batten TFC, Pauza DH, Ng GA, Brack KE. Electrophysiological effects of nicotinic and electrical stimulation of intrinsic cardiac ganglia in the absence of extrinsic autonomic nerves in the rabbit heart. Heart Rhythm 2018; 15:1698-1707. [PMID: 29800749 PMCID: PMC6207532 DOI: 10.1016/j.hrthm.2018.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/18/2022]
Abstract
Background The intrinsic cardiac nervous system is a rich network of cardiac nerves that converge to form distinct ganglia and extend across the heart and is capable of influencing cardiac function. Objective The goals of this study were to provide a complete picture of the neurotransmitter/neuromodulator profile of the rabbit intrinsic cardiac nervous system and to determine the influence of spatially divergent ganglia on cardiac electrophysiology. Methods Nicotinic or electrical stimulation was applied at discrete sites of the intrinsic cardiac nerve plexus in the Langendorff-perfused rabbit heart. Functional effects on sinus rate and atrioventricular conduction were measured. Immunohistochemistry for choline acetyltransferase (ChAT), tyrosine hydroxylase, and/or neuronal nitric oxide synthase (nNOS) was performed using whole mount preparations. Results Stimulation within all ganglia produced either bradycardia, tachycardia, or a biphasic brady-tachycardia. Electrical stimulation of the right atrial and right neuronal cluster regions produced the largest chronotropic responses. Significant prolongation of atrioventricular conduction was predominant at the pulmonary vein-caudal vein region. Neurons immunoreactive (IR) only for ChAT, tyrosine hydroxylase, or nNOS were consistently located within the limits of the hilum and at the roots of the right cranial and right pulmonary veins. ChAT-IR neurons were most abundant (1946 ± 668 neurons). Neurons IR only for nNOS were distributed within ganglia. Conclusion Stimulation of intrinsic ganglia, shown to be of phenotypic complexity but predominantly of cholinergic nature, indicates that clusters of neurons are capable of independent selective effects on cardiac electrophysiology, therefore providing a potential therapeutic target for the prevention and treatment of cardiac disease.
Collapse
Affiliation(s)
- Emily Allen
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; NIHR Leicester BRC, Glenfield Hospital, Leicester, United Kingdom
| | - John H Coote
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Blair D Grubb
- Institute of Life and Human Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Dainius H Pauza
- Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - G André Ng
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; NIHR Leicester BRC, Glenfield Hospital, Leicester, United Kingdom.
| | - Kieran E Brack
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; NIHR Leicester BRC, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
7
|
Yeo JM, Tse V, Kung J, Lin HY, Lee YT, Kwan J, Yan BP, Tse G. Isolated heart models for studying cardiac electrophysiology: a historical perspective and recent advances. J Basic Clin Physiol Pharmacol 2018; 28:191-200. [PMID: 28063261 DOI: 10.1515/jbcpp-2016-0110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/12/2016] [Indexed: 01/25/2023]
Abstract
Experimental models used in cardiovascular research range from cellular to whole heart preparations. Isolated whole hearts show higher levels of structural and functional integration than lower level models such as tissues or cellular fragments. Cardiovascular diseases are multi-factorial problems that are dependent on highly organized structures rather than on molecular or cellular components alone. This article first provides a general introduction on the animal models of cardiovascular diseases. It is followed by a detailed overview and a historical perspective of the different isolated heart systems with a particular focus on the Langendorff perfusion method for the study of cardiac arrhythmias. The choice of species, perfusion method, and perfusate composition are discussed in further detail with particular considerations of the theoretical and practical aspects of experimental settings.
Collapse
Affiliation(s)
- Jie Ming Yeo
- School of Medicine, Imperial College London, London
| | - Vivian Tse
- Department of Physiology, McGill University, Montreal, Quebec
| | - Judy Kung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Joseph Kwan
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Bryan P Yan
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, P.R
| |
Collapse
|
8
|
Ito BR, Covell JW, Curtis GP. Low Intensity Epicardial Pacing During the Absolute Refractory Period Augments Left Ventricular Function Mediated by Local Catecholamine Release. J Cardiovasc Electrophysiol 2016; 27:1102-9. [PMID: 27279561 DOI: 10.1111/jce.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Biventricular epicardial (Epi) pacing can augment left ventricular (LV) function in heart failure. We postulated that these effects might involve catecholamine release from local autonomic nerve activation. To evaluate this hypothesis we applied low intensity Epi electrical stimuli during the absolute refractory period (ARP), thus avoiding altered activation sequence. METHODS Anesthetized pigs (n = 6) were instrumented with an LV pressure (LVP) transducer, left atrial (LA) and LV Epi pacing electrodes, and sonomicrometer segment length (SL) gauges placed proximal and remote to the LV stimulation site. A catheter was placed into the great cardiac vein adjacent to the LV pacing site for norepinephrine (NE) analysis. During LA pacing at constant rate, 3 pulses (0.8 milliseconds, 2-3x threshold) were applied to the LV Epi electrodes during the ARP. An experimental run consisted of baseline, stimulation (10 minutes), and recovery (5 minutes), repeated 3 times before and after β1 - receptor blockade (BB, metoprolol). RESULTS ARP stimulation produced significant increases in cardiac function reflected by elevated LVP, LV, dP/dtmax , and reduced time to LV dP/dtmax . This was accompanied by increased coronary NE levels and increases in LVP versus SL loop area in the remote myocardial segment. In contrast, the proximal segment exhibited early shortening and decreased loop area. BB abolished the changes in SL and LV function despite continued NE release. CONCLUSION These results demonstrate that ARP EPI stimulation induces NE release mediating augmented global LV function. This effect may contribute to the beneficial effect of biventricular Epi pacing in heart failure in some patients.
Collapse
Affiliation(s)
- Bruce R Ito
- Donald P. Shiley Bioscience Center, San Diego State University, San Diego, California, USA. .,University of California, San Diego, California, USA.
| | | | - Guy P Curtis
- Scripps Clinic and Research, San Diego and La Jolla, California, USA
| |
Collapse
|
9
|
Regulator of G-protein signaling 6 (RGS6) in cardiology and oncology. Int J Cardiol 2015; 187:99-102. [PMID: 25828322 DOI: 10.1016/j.ijcard.2015.03.278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
|
10
|
Patanè S. Regulator of G-protein signaling 2 (RGS2) in cardiology and oncology. Int J Cardiol 2014; 179:63-5. [PMID: 25464414 DOI: 10.1016/j.ijcard.2014.10.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Salvatore Patanè
- Cardiologia Ospedale San Vincenzo - Taormina (Me) Azienda Sanitaria Provinciale di Messina, 98039 Taormina, Messina, Italy. patane-@libero.it
| |
Collapse
|
11
|
Patanè S. M3 muscarinic acetylcholine receptor in cardiology and oncology. Int J Cardiol 2014; 177:646-9. [PMID: 25449471 DOI: 10.1016/j.ijcard.2014.09.178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Salvatore Patanè
- Cardiologia Ospedale San Vincenzo - Taormina (Me) Azienda Sanitaria Provinciale di Messina, Contrada Sirina, 98039 Taormina (Messina), Italy. patane-@libero.it
| |
Collapse
|
12
|
Fosinopril improves the electrophysiological characteristics of left ventricular hypertrophic myocardium in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:1037-44. [DOI: 10.1007/s00210-014-1024-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/16/2014] [Indexed: 11/26/2022]
|