1
|
Mozaffari MS. Serum Glucocorticoid-Regulated Kinase-1 in Ischemia-Reperfusion Injury: Blessing or Curse. J Pharmacol Exp Ther 2023; 387:277-287. [PMID: 37770199 DOI: 10.1124/jpet.123.001846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
The family of serum-glucocorticoid-regulated kinase (SGK) consists of three paralogs, SGK-1, SGK-2, and SGK-3, with SGK-1 being the better studied. Indeed, recognition of the role of SGK-1 in regulation of cell survival and proliferation has led to introduction of a number of small-molecule inhibitors for some types of cancer. In addition, SGK-1 regulates major physiologic effects, such as renal solute transport, and contributes to the pathogenesis of non-neoplastic conditions involving major organs including the heart and the kidney. These observations raise the prospect for therapeutic modulation of SGK-1 to reduce the burden of such diseases as myocardial infarction and acute kidney injury. Following a brief description of the structure and function of SGK family of proteins, the present review is primarily focused on our current understanding of the role of SGK-1 in pathologies related to ischemia-reperfusion injury involving several organs (e.g., heart, kidney). The essential role of the mitochondrial permeability transition pore in cell death coupled with the pro-survival function of SGK-1 raise the prospect that its therapeutic modulation could beneficially impact conditions associated with ischemia-reperfusion injury. SIGNIFICANCE STATEMENT: Since the discovery of serum glucocorticoid-regulated kinase (SGK)-1, extensive research has unraveled its role in cancer biology and, thus, its therapeutic targeting. Increasingly, it is also becoming clear that SGK-1 is a major determinant of the outcome of ischemia-reperfusion injury to various organs. Thus, evaluation of existing information should help identify gaps in our current knowledge and also determine whether and how its therapeutic modulation could impact the outcome of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Mahmood S Mozaffari
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
2
|
Chaudhary M, Sharma V, Bedi O, Kaur A, Singh TG. SGK-1 Signalling Pathway is a Key Factor in Cell Survival in Ischemic Injury. Curr Drug Targets 2023; 24:1117-1126. [PMID: 37904552 DOI: 10.2174/0113894501239948231013072901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/11/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023]
Abstract
Serum and glucocorticoid-regulated kinases (SGK) are serine/threonine kinases that belong to AGC. The SGK-1, which responds to stress, controls a range of ion channels, cell growth, transcription factors, membrane transporters, cellular enzymes, cell survival, proliferation and death. Its expression is highly controlled by various factors such as hyperosmotic or isotonic oxidative stress, cell shrinkage, radiation, high blood sugar, neuronal injury, DNA damage, mechanical stress, thermal shock, excitement, dehydration and ischemia. The structural and functional deterioration that arises after a period of ischemia when blood flow is restored is referred to as ischemia/ reperfusion injury (I/R). The current review discusses the structure, expression, function and degradation of SGK-1 with special emphasis on the various ischemic injuries in different organs such as renal, myocardial, cerebral, intestinal and lungs. Furthermore, this review highlights the various therapeutic agents that activate the SGK-1 pathway and slow down the progression of I/R injuries.
Collapse
Affiliation(s)
- Manisha Chaudhary
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
3
|
Liu M, Lian B, Lan Z, Sun H, Zhao Y, Sun T, Meng Z, Zhao C, Zhang J. Transcriptomic Profile Identifies Hippocampal Sgk1 as the Key Mediator of Ovarian Estrogenic Regulation on Spatial Learning and Memory and Aβ Accumulation. Neurochem Res 2022; 47:3369-3384. [PMID: 35915371 DOI: 10.1007/s11064-022-03690-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Previous studies have shown that ovarian estrogens are involved in the occurrence and pathology of Alzheimer's disease (AD) through regulation on hippocampal synaptic plasticity and spatial memory; however, the underlying mechanisms have not yet been elucidated at the genomic scale. In this study, we established the postmenopausal estrogen-deficient model by ovariectomy (OVX). Then, we used high-throughput Affymetrix Clariom transcriptomics and found 143 differentially expressed genes in the hippocampus of OVX mice with the absolute fold change ≥ 1.5 and P < 0.05. GO analysis showed that the highest enrichment was seen in long-term memory. Combined with the response to steroid hormone enrichment and GeneMANIA network prediction, the serum and glucocorticoid-regulated kinase 1 gene (Sgk1) was found to be the most potent candidate for ovarian estrogenic regulation. Sgk1 overexpression viral vectors (oSgk1) were then constructed and injected into the hippocampus of OVX mice. Morris water maze test revealed that the impaired spatial learning and memory induced by OVX was rescued by Sgk1 overexpression. Additionally, the altered expression of synaptic proteins and actin remodeling proteins and changes in CA1 spine density and synapse density induced by OVX were also significantly reversed by oSgk1. Moreover, the OVX-induced increase in Aβ-producing BACE1 and Aβ and the decrease in insulin degrading enzyme were significantly reversed by oSgk1. The above results show that multiple pathways and genes are involved in ovarian estrogenic regulation of the function of the hippocampus, among which Sgk1 may be a novel potent target against estrogen-sensitive hippocampal dysfunctions, such as Aβ-initiated AD.
Collapse
Affiliation(s)
- Mengying Liu
- The 305 Hospital of PLA, Beijing, 100017, China.,Department of Neurobiology, Army Medical University, Chongqing, 400038, China
| | - Biyao Lian
- Department of Pediatrics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.,Department of Human Anatomy and Tissue Embryology, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing, 400038, China
| | - Huan Sun
- Department of Neurobiology, Army Medical University, Chongqing, 400038, China.,Center for Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yangang Zhao
- Department of Neurology, Hainan Hospital of PLA General Hospital, Sanya, 572013, China
| | - Tao Sun
- Department of Neurobiology, Army Medical University, Chongqing, 400038, China
| | - Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing, 400038, China
| | - Chengjun Zhao
- Department of Human Anatomy and Tissue Embryology, Ningxia Medical University, Yinchuan, 750004, China. .,Medical Sci-Tech Research Center, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
Gao Y, Tang Y, Zhang H, Chu X, Yan B, Li J, Liu C. Vincristine leads to colonic myenteric neurons injury via pro-inflammatory macrophages activation. Biochem Pharmacol 2021; 186:114479. [PMID: 33617842 DOI: 10.1016/j.bcp.2021.114479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 01/28/2023]
Abstract
Vincristine is widely used in treatment of various malignant tumors. The clinical application of vincristine is accompanied by peripheral neurotoxicity which might not be strictly related to the mechanism of anti-tumor action. There are several possible mechanisms but the effect of vincristine on enteric neurons and the underlying mechanism are still unclear. C57BL6/J mice were systematically treated with vincristine for 10 days, and macrophages were depleted using clodronate liposomes. The colonic myenteric plexus neurons were extracted and cultured in vitro. Macrophages from different parts were extracted in an improved way. In the current study, we demonstrated that system treatment of vincristine resulted in colonic myenteric neurons injury, pro-inflammatory macrophages activation and total gastrointestinal transport time increase. Vincristine promoted the pro-inflammatory macrophages activation individually or in coordination with LPS and increased the expression of pro-inflammatory factors IL-1β, IL-6, TNF-α via increasing the phosphorylation of ERK1/2 and p38. In addition, pro-inflammatory macrophages led to colonic myenteric neurons apoptosis targeting on SGK1-FOXO3 pathway. These effects were attenuated by inhibitors of the ERK1/2 and p38-MAPK pathways. Importantly, macrophages depletion alleviated colonic myenteric neurons injury and the delay of gastrointestinal motility caused by system treatment of vincristine. Taken together, system treatment of vincristine led to colonic myenteric neurons injury via pro-inflammatory macrophages activation which was alleviated by depletion of macrophages.
Collapse
Affiliation(s)
- Yifei Gao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Yan Tang
- Department of Gastroenterology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, PR China
| | - Haojie Zhang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Bing Yan
- Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250012, PR China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Chuanyong Liu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo Medical College, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China; Provincial Key Lab of Mental Disorders, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
5
|
Wang D, Huang Z, Li L, Yuan Y, Xiang L, Wu X, Ni C, Yu W. Intracarotid cold saline infusion contributes to neuroprotection in MCAO‑induced ischemic stroke in rats via serum and glucocorticoid‑regulated kinase 1. Mol Med Rep 2019; 20:3942-3950. [PMID: 31485662 DOI: 10.3892/mmr.2019.10599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 11/05/2022] Open
Abstract
Intracarotid cold saline infusion (ICSI) brings about neuroprotective effects in ischemic stroke. However, the involvement of serum and glucocorticoid‑regulated kinase 1 (SGK1) in the underlying mechanism of ICSI is not fully understood; therefore, we used the rat middle cerebral artery occlusion (MCAO) model to investigate the neuroprotective effects of ICSI on ischemic stroke in rats, as well as the involvement of SGK1 in these effects. ICSI decreased infarct size and brain swelling, as determined by 2,3,5‑triphenyltetrazolium chloride staining and the dry‑wet weight method, respectively. The results of terminal deoxynucleotidyl transferase mediated nick end labeling (TUNEL) and Nissl staining showed that ICSI also suppressed apoptosis and increased the relative integral optical density (IOD) values of Nissl bodies in the rat MCAO model. Regarding the mechanism, the results of immunohistochemistry and western blotting revealed that ICSI upregulated SGK1 expression and downregulated beclin‑1 and LC‑3 expression in the rat MCAO model. In addition, SGK1 knockdown increased ICSI‑mediated infarct size and brain swelling, promoted apoptosis, and reduced the IOD values of Nissl bodies in the rat MCAO model. In addition, we found that SGK1 knockdown upregulated beclin‑1 and LC‑3 expression mediated by ICSI. Overall, ICSI had a neuroprotective effect on ischemic stroke after reperfusion by upregulating SGK1 and inhibiting autophagy.
Collapse
Affiliation(s)
- Dazhi Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhi Huang
- Department of Interventional Radiology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, P.R. China
| | - Lei Li
- Department of General Courses, People's Armed College of Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Yingnan Yuan
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Lei Xiang
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Xiaowen Wu
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Caifang Ni
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wenfeng Yu
- Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
6
|
Xie Y, Jiang D, Xiao J, Fu C, Zhang Z, Ye Z, Zhang X. Ischemic preconditioning attenuates ischemia/reperfusion-induced kidney injury by activating autophagy via the SGK1 signaling pathway. Cell Death Dis 2018; 9:338. [PMID: 29497029 PMCID: PMC5832808 DOI: 10.1038/s41419-018-0358-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
Ischemic preconditioning (IPC) has a strong renoprotective effect during renal ischemia/reperfusion (I/R) injury that is thought to relate to autophagy. However, the role of autophagy during IPC-afforded renoprotection and the precise mechanisms involved are unknown. In this study, an in vitro hypoxia/reoxygenation (H/R) model was established in which oxygen and glucose deprivation (OGD) was applied to renal cells for 15 h followed by reoxygenation under normal conditions for 30 min, 2 h or 6 h; transient OGD and subsequent reoxygenation were implemented before prolonged H/R injury to achieve hypoxic preconditioning (HPC). 3-Methyladenine (3-MA) was used to inhibit autophagy. In a renal I/R injury model, rats were subjected to 40 min of renal ischemia followed by 6 h, 12 h or 24 h of reperfusion. IPC was produced by four cycles of ischemia (8 min each) followed by 5 min of reperfusion prior to sustained ischemia. We found that IPC increased LC3II and Beclin-1 levels and decreased SQSTM/p62 and cleaved caspase-3 levels in a time-dependent manner during renal I/R injury, as well as increased the number of intracellular double-membrane vesicles in injured renal cells. IPC-induced renal protection was efficiently attenuated by pretreatment with 5 mM 3-MA. Pretreatment with IPC also dynamically affected the expression of SGK1/FOXO3a/HIF-1α signaling components. Moreover, knocking down SGK1 expression significantly downregulated phosphorylated-FOXO3a (p-FOXO3a)/FOXO3 and HIF-1α, suppressed LC3II and Beclin-1 levels, increased SQSTM/p62 and cleaved caspase-3 levels, and abolished the protective effect of IPC against I/R-induced renal damage. SGK1 overexpression efficiently increased p-FOXO3a/FOXO3 and HIF-1α levels, promoted the autophagy flux and enhanced the protective effect mediated by HPC. Furthermore, FOXO3a overexpression decreased HIF-1α protein levels, inhibited HIF-1α transcriptional activity and reduced the protective effect of IPC. Our study indicates that IPC can ameliorate renal I/R injury by promoting autophagy through the SGK1 pathway.
Collapse
Affiliation(s)
- Ying Xie
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Daofang Jiang
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Jing Xiao
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China
| | - Chensheng Fu
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhenxing Zhang
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Xiaoli Zhang
- Department of Nephrology, Huadong Hospital, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| |
Collapse
|