1
|
Xu YZ, Xu ZY, Fu HX, Yue M, Li JQ, Cui CP, Wu D, Li BY. Caution for Multidrug Therapy: Significant Baroreflex Afferent Neuroexcitation Coordinated by Multi-Channels/Pumps Under the Threshold Concentration of Yoda1 and Dobutamine Combination. Biomolecules 2024; 14:1311. [PMID: 39456244 PMCID: PMC11506362 DOI: 10.3390/biom14101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Multi-drug therapies are common in cardiovascular disease intervention; however, io channel/pump coordination has not been tested electrophysiologically. Apparently, inward currents were not elicited by Yoda1/10 nM or Dobutamine/100 nM alone in Ah-type baroreceptor neurons, but were by their combination. To verify this, electroneurography and the whole-cell patch-clamp technique were performed. The results showed that Ah- and C-volley were dramatically increased by the combination at 0.5 V and 5 V, in contrast to A-volley, as consistent with repetitive discharge elicited by step and ramp with markedly reduced current injection/stimulus intensity. Notably, a frequency-dependent action potential (AP) duration was increased with Iberiotoxin-sensitive K+ component. Furthermore, an increased peak in AP measured in phase plots suggested enhanced Na+ influx, cytoplasmic Ca2+ accumulation through reverse mode of Na+/Ca2+ exchanger, and, consequently, functional KCa1.1 up-regulation. Strikingly, the Yoda1- or Dbtm-mediated small/transient Na+/K+-pump currents were robustly increased by their combination, implying a quick ion equilibration that may also be synchronized by hyperpolarization-induced voltage-sag, enabling faster repetitive firing. These novel findings demonstrate multi-channel/pump collaboration together to integrate neurotransmission at the cellular level for baroreflex, providing an afferent explanation in sexual dimorphic blood pressure regulation, and raising the caution regarding the individual drug concentration in multi-drug therapies to optimize efficacy and minimize toxicity.
Collapse
Affiliation(s)
- Yin-zhi Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhao-yuan Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hui-xiao Fu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mao Yue
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jia-qun Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chang-peng Cui
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Di Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Bai-yan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
2
|
Cui CP, Xiong X, Zhao JX, Fu DH, Zhang Y, Ma PB, Wu D, Li BY. Piezo1 channel activation facilitates baroreflex afferent neurotransmission with subsequent blood pressure reduction in control and hypertension rats. Acta Pharmacol Sin 2024; 45:76-86. [PMID: 37670136 PMCID: PMC10770313 DOI: 10.1038/s41401-023-01154-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/12/2023] [Indexed: 09/07/2023] Open
Abstract
Mechanosensitive cation channels such as Piezo1 and Piezo2 are activated by mechanical force like a starched wall of the aorta while blood pressure (BP) rising, which helps to elucidate the underlying mechanism of mechanotransduction of baroreceptor endings. In this study we investigated how Piezo1 channel activation-mediated gender- and afferent-specific BP regulation in rats. We established high-fat diet and fructose drink-induced hypertension model rats (HFD-HTN) and deoxycorticosterone (DOCA)-sensitive hypertension model rats. We showed that the expression levels of Piezo1 and Piezo2 were significantly up-regulated in left ventricle of HFD and DOCA hypertensive rats, whereas the down-regulation of Piezo1 was likely to be compensated by Piezo2 up-regulation in the aorta. Likewise, down-regulated Piezo1 was observed in the nodose ganglion (NG), while up-regulated Piezo2 was found in the nucleus tractus solitarius (NTS), which might synergistically reduce the excitatory neurotransmitter release from the presynaptic membrane. Notably, microinjection of Yoda1 (0.025-2.5 mg/ml) into the NG concentration-dependently reduced BP in both hypertensive rat models as well as in control rats with similar EC50; the effect of Yoda1 was abolished by microinjection of a Piezo1 antagonist GsMTx4 (1.0 μM). Functional analysis in an in vitro aortic arch preparation showed that instantaneous firing frequency of single Ah-fiber of aortic depressor nerve was dramatically increased by Yoda1 (0.03-1.0 μM) and blocked by GsMTx4 (1.0 μM). Moreover, spontaneous synaptic currents recorded from identified 2nd-order Ah-type baroreceptive neurons in the NTS was also facilitated over 100% by Yoda1 (1.0 μM) and completely blocked by GsMTx4 (3.0 μM). These results demonstrate that Piezo1 expressed on Ah-type baroreceptor and baroreceptive neurons in the NG and NTS plays a key role in a sexual-dimorphic BP regulation under physiological and hypertensive condition through facilitation of baroreflex afferent neurotransmission, which is presumably collaborated by Piezo2 expression at different level of baroreflex afferent pathway via compensatory and synergistic mechanisms.
Collapse
Affiliation(s)
- Chang-Peng Cui
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Xiong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jia-Xin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Dong-Hong Fu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Peng-Bo Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Di Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Natriuretic Peptides—New Targets for Neurocontrol of Blood Pressure via Baroreflex Afferent Pathway. Int J Mol Sci 2022; 23:ijms232113619. [DOI: 10.3390/ijms232113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
Natriuretic peptides (NPs) induce vasodilation, natriuresis, and diuresis, counteract the renin–angiotensin–aldosterone system and autonomic nervous system, and are key regulators of cardiovascular volume and pressure homeostasis. Baroreflex afferent pathway is an important reflex loop in the neuroregulation of blood pressure (BP), including nodose ganglion (NG) and nucleus tractus solitarius (NTS). Dysfunction of baroreflex would lead to various hypertensions. Here, we carried out functional experiments to explore the effects of NPs on baroreflex afferent function. Under physiological and hypertensive condition (high-fructose drinking-induced hypertension, HFD), BP was reduced by NPs through NG microinjection and baroreflex sensitivity (BRS) was enhanced via acute intravenous NPs injection. These anti-hypertensive effects were more obvious in female rats with the higher expression of NPs and its receptor A/B (NPRA/NPRB) and lower expression of its receptor C (NPRC). However, these effects were not as obvious as those in HFD rats compared with the same gender control group, which is likely to be explained by the abnormal expression of NPs and NPRs in the hypertensive condition. Our data provide additional evidence showing that NPs play a crucial role in neurocontrol of BP regulation via baroreflex afferent function and may be potential targets for clinical management of metabolic-related hypertension.
Collapse
|
4
|
Wu D, Zhao D, Huang D, Sun X, Li KX, Feng Y, Yan QX, Li XY, Cui CP, Li HD, Li BY. Estrogen-dependent depressor response of melatonin via baroreflex afferent function and intensification of PKC-mediated Na v1.9 activation. Acta Pharmacol Sin 2022; 43:2313-2324. [PMID: 35132193 PMCID: PMC9433371 DOI: 10.1038/s41401-022-00867-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/16/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies suggest that melatonin (Mel) plays an important role in the regulation of blood pressure (BP) via the aortic baroreflex pathway. In this study, we investigated the interaction between the baroreflex afferent pathway and Mel-mediated BP regulation in rats under physiological and hypertensive conditions. Mel (0.1, 0.3, and 1.0 mg/mL) was microinjected into the nodose ganglia (NG) of rats. We showed that Mel-induced reduction of mean arterial pressure in female rats was significantly greater than that in male and in ovariectomized rats under physiological condition. Consistently, the expression of Mel receptors (MTNRs) in the NG of female rats was significantly higher than that of males. In L-NAME-induced hypertensive and spontaneously hypertensive rat models, MTNRs were upregulated in males but downregulated in female models. Interestingly, Mel-induced BP reduction was found in male hypertensive models. In whole-cell recording from identified baroreceptor neurons (BRNs) in female rats, we found that Mel (0.1 μM) significantly increased the excitability of a female-specific subpopulation of Ah-type BRNs by increasing the Nav1.9 current density via a PKC-mediated pathway. Similar results were observed in baroreceptive neurons of the nucleus tractus solitarius, showing the facilitation of spontaneous and evoked excitatory post-synaptic currents in Ah-type neurons. Collectively, this study reveals the estrogen-dependent effect of Mel/MTNRs under physiological and hypertensive conditions is mainly mediated by Ah-type BRNs, which may provide new theoretical basis and strategies for the gender-specific anti-hypertensive treatment in clinical practice.
Collapse
Affiliation(s)
- Di Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Dan Zhao
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Di Huang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xun Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ke-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yan Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qiu-Xin Yan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xin-Yu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chang-Peng Cui
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hu-Die Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
Ren D, Li JN, Qiu XT, Wan FP, Wu ZY, Fan BY, Zhang MM, Chen T, Li H, Bai Y, Li YQ. Anterior Cingulate Cortex Mediates Hyperalgesia and Anxiety Induced by Chronic Pancreatitis in Rats. Neurosci Bull 2021; 38:342-358. [PMID: 34907496 PMCID: PMC9068840 DOI: 10.1007/s12264-021-00800-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
Central sensitization is essential in maintaining chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. Here, we examined the role of the anterior cingulate cortex (ACC) in the pathogenesis of abdominal hyperalgesia in a rat model of CP induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). TNBS treatment resulted in long-term abdominal hyperalgesia and anxiety in rats. Morphological data indicated that painful CP induced a significant increase in FOS-expressing neurons in the nucleus tractus solitarii (NTS) and ACC, and some FOS-expressing neurons in the NTS projected to the ACC. In addition, a larger portion of ascending fibers from the NTS innervated pyramidal neurons, the neural subpopulation primarily expressing FOS under the condition of painful CP, rather than GABAergic neurons within the ACC. CP rats showed increased expression of vesicular glutamate transporter 1, and increased membrane trafficking and phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) subunit NR2B and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluR1 within the ACC. Microinjection of NMDAR and AMPAR antagonists into the ACC to block excitatory synaptic transmission significantly attenuated abdominal hyperalgesia in CP rats, which was similar to the analgesic effect of endomorphins injected into the ACC. Specifically inhibiting the excitability of ACC pyramidal cells via chemogenetics reduced both hyperalgesia and comorbid anxiety, whereas activating these neurons via optogenetics failed to aggravate hyperalgesia and anxiety in CP rats. Taken together, these findings provide neurocircuit, biochemical, and behavioral evidence for involvement of the ACC in hyperalgesia and anxiety in CP rats, as well as novel insights into the cortical modulation of painful CP, and highlights the ACC as a potential target for neuromodulatory interventions in the treatment of painful CP.
Collapse
Affiliation(s)
- Dan Ren
- Department of Anatomy, Guangxi Medical University, Nanning, 510000, China.,Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Fa-Ping Wan
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China.,Department of Anatomy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhen-Yu Wu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo-Yuan Fan
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, 710004, China
| | - Ming-Ming Zhang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Bai
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China. .,Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Yun-Qing Li
- Department of Anatomy, Guangxi Medical University, Nanning, 510000, China. .,Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China. .,Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, 570216, China. .,Department of Human Anatomy, College of Basic Medicine, Dali University, Dali, 671000, China.
| |
Collapse
|
6
|
Wang LQ, Qian Z, Ma HL, Zhou M, Li HD, Cui CP, Luo DL, Li XL, Li BY. Estrogen-dependent KCa1.1 modulation is essential for retaining neuroexcitation of female-specific subpopulation of myelinated Ah-type baroreceptor neurons in rats. Acta Pharmacol Sin 2021; 42:2173-2180. [PMID: 34267344 PMCID: PMC8632902 DOI: 10.1038/s41401-021-00722-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Female-specific subpopulation of myelinated Ah-type baroreceptor neurons (BRNs) in nodose ganglia is the neuroanatomical base of sexual-dimorphic autonomic control of blood pressure regulation, and KCa1.1 is a key player in modulating the neuroexcitation in nodose ganglia. In this study we investigated the exact mechanisms underlying KCa1.1-mediated neuroexcitation of myelinated Ah-type BRNs in the presence or absence of estrogen. BRNs were isolated from adult ovary intact (OVI) or ovariectomized (OVX) female rats, and identified electrophysiologically and fluorescently. Action potential (AP) and potassium currents were recorded using whole-cell recording. Consistently, myelinated Ah-type BRNs displayed a characteristic discharge pattern and significantly reduced excitability after OVX with narrowed AP duration and faster repolarization largely due to an upregulated iberiotoxin (IbTX)-sensitive component; the changes in AP waveform and repetitive discharge of Ah-types from OVX female rats were reversed by G1 (a selective agonist for estrogen membrane receptor GPR30, 100 nM) and/or IbTX (100 nM). In addition, the effect of G1 on repetitive discharge could be completely blocked by G15 (a selective antagonist for estrogen membrane receptor GPR30, 3 μM). These data suggest that estrogen deficiency by removing ovaries upregulates KCa1.1 channel protein in Ah-type BRNs, and subsequently increases AP repolarization and blunts neuroexcitation through estrogen membrane receptor signaling. Intriguingly, this upregulated KCa1.1 predicted electrophysiologically was confirmed by increased mean fluorescent intensity that was abolished by estrogen treatment. These electrophysiological findings combined with immunostaining and pharmacological manipulations reveal the crucial role of KCa1.1 in modulation of neuroexcitation especially in female-specific subpopulation of myelinated Ah-type BRNs and extend our current understanding of sexual dimorphism of neurocontrol of BP regulation.
Collapse
Affiliation(s)
- Lu-Qi Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhao Qian
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacy, the First Affiliated Hospital of Harbin Medical University, Harbin, 150010, China
| | - Hai-Lan Ma
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meng Zhou
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hu-Die Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chang-Peng Cui
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Da-Li Luo
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xue-Lian Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Bai-Yan Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
7
|
Estrogen-dependent MicroRNA-504 Expression and Related Baroreflex Afferent Neuroexcitation via Negative Regulation on KCNMB4 and KCa1.1 β4-subunit Expression. Neuroscience 2020; 442:168-182. [DOI: 10.1016/j.neuroscience.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 11/21/2022]
|
8
|
Wen X, Yu X, Huo R, Yan QX, Wu D, Feng Y, Li Y, Sun X, Li XY, Sun J, Li KX, Li QY, Han LM, Lu XL, Liu Y, Shou W, Li BY. Serotonin-Mediated Cardiac Analgesia via Ah-Type Baroreceptor Activation Contributes to Silent Angina and Asymptomatic Infarction. Neuroscience 2019; 411:150-163. [DOI: 10.1016/j.neuroscience.2019.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
|
9
|
Xu WX, Yu JL, Feng Y, Yan QX, Li XY, Li Y, Liu Z, Wang D, Sun X, Li KX, Wang LQ, Qiao GF, Li BY. Spontaneous activities in baroreflex afferent pathway contribute dominant role in parasympathetic neurocontrol of blood pressure regulation. CNS Neurosci Ther 2018; 24:1219-1230. [PMID: 30044043 DOI: 10.1111/cns.13039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
AIM To study the dominant role of parasympathetic inputs at cellular level of baroreflex afferent pathway and underlying mechanism in neurocontrol of blood pressure regulation. METHODS Whole-cell patch-clamp and animal study were conducted. RESULTS For the first time, we demonstrated the spontaneous activities from resting membrane potential in myelinated A- and Ah-type baroreceptor neurons (BRNs, the 1st-order), but not in unmyelinated C-types, using vagus-nodose slice of adult female rats. These data were further supported by the notion that the spontaneous synaptic currents could only be seen in the pharmacologically and electrophysiologically defined myelinated A- and Ah-type baroreceptive neurons (the 2nd-order) of NTS using brainstem slice of adult female rats. The greater frequency and the larger amplitude of the spontaneous excitatory postsynaptic currents (EPSCs) compared with the inhibitory postsynaptic currents (IPSCs) were only observed in Ah-types. The ratio of EPSCs:IPSCs was estimated at 3:1 and higher. These results confirmed that the afferent-specific spontaneous activities were generated from baroreflex afferent pathway in female-specific subpopulation of myelinated Ah-type BRNs in nodose and baroreceptive neurons in NTS, which provided a novel insight into the dominant role of sex-specific baroreflex-evoked parasympathetic drives in retaining a stable and lower blood pressure status in healthy subjects, particularly in females. CONCLUSION The data from current investigations establish a new concept for the role of Ah-type baroreceptor/baroreceptive neurons in controlling blood pressure stability and provide a new pathway for pharmacological intervention for hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Wen-Xiao Xu
- Department of Orthopedic Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jin-Ling Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qiu-Xin Yan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin-Yu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhuo Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Di Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xun Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ke-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lu-Qi Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis School of Engineering and Technology, Indianapolis, Indiana
| | - Guo-Fen Qiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Wang LQ, Liu SZ, Wen X, Wu D, Yin L, Fan Y, Wang Y, Chen WR, Chen P, Liu Y, Lu XL, Sun HL, Shou W, Qiao GF, Li BY. Ketamine-mediated afferent-specific presynaptic transmission blocks in low-threshold and sex-specific subpopulation of myelinated Ah-type baroreceptor neurons of rats. Oncotarget 2016; 6:44108-22. [PMID: 26675761 PMCID: PMC4792545 DOI: 10.18632/oncotarget.6586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/29/2015] [Indexed: 01/19/2023] Open
Abstract
Background Ketamine enhances autonomic activity, and unmyelinated C-type baroreceptor afferents are more susceptible to be blocked by ketamine than myelinated A-types. However, the presynaptic transmission block in low-threshold and sex-specific myelinated Ah-type baroreceptor neurons (BRNs) is not elucidated. Methods Action potentials (APs) and excitatory post-synaptic currents (EPSCs) were investigated in BRNs/barosensitive neurons identified by conduction velocity (CV), capsaicin-conjugated with Iberiotoxin-sensitivity and fluorescent dye using intact nodose slice and brainstem slice in adult female rats. The expression of mRNA and targeted protein for NMDAR1 was also evaluated. Results Ketamine time-dependently blocked afferent CV in Ah-types in nodose slice with significant changes in AP discharge. The concentration-dependent inhibition of ketamine on AP discharge profiles were also assessed and observed using isolated Ah-type BRNs with dramatic reduction in neuroexcitability. In brainstem slice, the 2nd-order capsaicin-resistant EPSCs were identified and ∼50% of them were blocked by ketamine concentration-dependently with IC50 estimated at 84.4 μM compared with the rest (708.2 μM). Interestingly, the peak, decay time constant, and area under curve of EPSCs were significantly enhanced by 100 nM iberiotoxin in ketamine-more sensitive myelinated NTS neurons (most likely Ah-types), rather than ketamine-less sensitive ones (A-types). Conclusions These data have demonstrated, for the first time, that low-threshold and sex-specific myelinated Ah-type BRNs in nodose and Ah-type barosensitive neurons in NTS are more susceptible to ketamine and may play crucial roles in not only mean blood pressure regulation but also buffering dynamic changes in pressure, as well as the ketamine-mediated cardiovascular dysfunction through sexual-dimorphic baroreflex afferent pathway.
Collapse
Affiliation(s)
- Lu-Qi Wang
- Department of Pharmacology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Sheng-Zhi Liu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Xin Wen
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Di Wu
- Key Laboratory of Cardiovascular Medicine Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Lei Yin
- Key Laboratory of Cardiovascular Medicine Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Yao Fan
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Ye Wang
- Department of Pharmacology, Daqing Campus of Harbin Medical University, Daqing, China
| | - Wei-Ran Chen
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Pei Chen
- Key Laboratory of Cardiovascular Medicine Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Xiao-Long Lu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Hong-Li Sun
- Department of Pharmacology, Daqing Campus of Harbin Medical University, Daqing, China
| | - Weinian Shou
- Riley Heart Research Center, Division of Pediatric Cardiology, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guo-Fen Qiao
- Department of Pharmacology, Harbin Medical University, Harbin, China.,Key Laboratory of Cardiovascular Medicine Research of Ministry of Education, Harbin Medical University, Harbin, China
| | - Bai-Yan Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Liu H, Duan SR. Prostaglandin E2-mediated upregulation of neuroexcitation and persistent tetrodotoxin-resistant Na(+) currents in Ah-type trigeminal ganglion neurons isolated from adult female rats. Neuroscience 2016; 320:194-204. [PMID: 26868972 DOI: 10.1016/j.neuroscience.2016.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/31/2016] [Accepted: 02/03/2016] [Indexed: 11/16/2022]
Abstract
Prostaglandin-E2 (PGE2) is a very important inflammatory mediator and PGE2-mediated neuroexcitation in sex-specific distribution of Ah-type trigeminal ganglion neurons (TGNs) isolated from adult female rats is not fully addressed. The whole-cell patch-clamp experiment was performed to verify the effects of PGE2, forskolin, and GPR30-selective agonist (G-1) on action potential (AP) and tetrodotoxin-resistant (TTX-R) Na(+) currents in identified Ah-type TGNs. The results showed that the firing frequency was increased in Ah- and C-types by PGE2, which was simulated by forskolin and inhibited by Rp-cyclic adenosine monophosphate (cAMP), while G-1 mimicked this effect only in Ah-types, which was abolished by GPR30-selective antagonist (G-15). Although the amplitude of AP was increased in Ah- and C-types, increased maximal upstroke velocity was confirmed only in Ah-types, suggesting distinct alternations in current density and/or voltage-dependent property of Na(+) channels. With 1.0 μM PGE2, TTX-R Na(+) currents were upregulated without changing the current-voltage relationship and voltage-dependent activation in C-types, however, the TTX-R Na(+) current was augmented in Ah-types, peaked voltage and the voltage-dependent activation were both shifted toward hyperpolarized direction with faster slope. Intriguingly, the low-threshold persistent TTX-R component was activated from -60 mV and increased almost double at -30 mV compared with ∼30-40% increment of TTX-R component being activated at ∼-10 mV. Additionally, the change in TTX-R component of Ah-types was equivalent well with that in C-type TGNs. Taken these data together, we conclude that PGE2 modulates the neuroexcitation via cAMP-mediated upregulation of TTX-R Na(+) currents in both cell-types with hormone-dependent feature, especially persistent TTX-R Na(+) currents in sex-specific distribution of myelinated Ah-type TGNs.
Collapse
Affiliation(s)
- H Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - S-R Duan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Liu Y, Zhou JY, Zhou YH, Wu D, He JL, Han LM, Liang XB, Wang LQ, Lu XL, Chen H, Qiao GF, Shou W, Li BY. Unique Expression of Angiotensin Type-2 Receptor in Sex-Specific Distribution of Myelinated Ah-Type Baroreceptor Neuron Contributing to Sex-Dimorphic Neurocontrol of Circulation. Hypertension 2016; 67:783-91. [DOI: 10.1161/hypertensionaha.115.06815] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/26/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Yang Liu
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Jia-Ying Zhou
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Yu-Hong Zhou
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Di Wu
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Jian-Li He
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Li-Min Han
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Xiao-Bo Liang
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Lu-Qi Wang
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Xiao-Long Lu
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Hanying Chen
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Guo-Fen Qiao
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Weinian Shou
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| | - Bai-Yan Li
- From the Department of Pharmacology (Y.L., J.-Y.Z., Y.-H.Z., D.W., J.-L.H., L.-M.H., X.-B.L., L.-Q.W., X.-L.L., G.-F.Q., B.-Y.L.) and Key Laboratory of Cardiovascular Medicine Research of Ministry of Education (Y.-H.Z., D.W., L.-Q.W., X,-B.L., G.-F.Q.), Harbin Medical University, Harbin, Heilongjiang, China; Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (H.C., W.S.)
| |
Collapse
|
13
|
Zhang YY, Yan ZY, Qu MY, Guo XJ, Li G, Lu XL, Liu Y, Ban T, Sun HL, Qiao GF, Li BY. KCa1.1 is potential marker for distinguishing Ah-type baroreceptor neurons in NTS and contributes to sex-specific presynaptic neurotransmission in baroreflex afferent pathway. Neurosci Lett 2015. [DOI: 10.1016/j.neulet.2015.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Li JN, Li XL, He J, Wang JX, Zhao M, Liang XB, Zhao SY, Ma MN, Liu Y, Wang YB, Chen H, Qiao GF, Li BY. Sex- and afferent-specific differences in histamine receptor expression in vagal afferents of rats: A potential mechanism for sexual dimorphism in prevalence and severity of asthma. Neuroscience 2015; 303:166-77. [PMID: 26141840 DOI: 10.1016/j.neuroscience.2015.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
The incidence of asthma is more common in boys than in girls during the childhood, and more common in premenopausal female than age-matched males. Our previous study demonstrated a gender difference in histamine-mediated neuroexcitability in nodose ganglia neurons (NGNs), highlighting a possibility of histamine-mediated gender difference in asthma via visceral afferent function. In the present study, we aimed to explore the gender difference in expression profiles of histamine receptors (HRs) in nodose ganglia (NG) and individual identified NGNs to provide deeper insights into the mechanisms involved in sexual dimorphism of asthma. Western-blot and SYBR green RT-PCR showed that H2R and H3R were highly expressed in NG of females compared with males and downregulated in ovariectomized females. H1R was equally expressed in NG of both sexes and not altered by ovariectomy. Furthermore, this highly expressive H2R and H3R were distributed in both myelinated and unmyelinated NGNs isolated from adult female rats by immunofluorescence and single-cell RT-PCR. H3R widely distributed in all tested neuron subtypes and its expression did not show significant difference among neuron subtypes. H2R was widely and highly expressed in low-threshold and sex-specific subpopulation of myelinated Ah-types compared with myelinated A- and unmyelinated C-type NGNs. Unexpectedly, weak expression of H1R was detected in both myelinated and unmyelinated NGNs by immunofluorescence, which was further confirmed by single-cell RT-PCR. Our results suggest that the sexual dimorphism in the expression of H2R and H3R in vagal afferents very likely contributes, at least partially, to the gender difference in prevalence and severity of asthma.
Collapse
Affiliation(s)
- J N Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - X L Li
- Department of Pharmacology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - J He
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - J X Wang
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - M Zhao
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - X B Liang
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - S Y Zhao
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - M N Ma
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China
| | - Y Liu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Y B Wang
- Department of Cerebral Surgery, Harbin Municipal First Hospital, Harbin, China
| | - H Chen
- Riley Heart Research Center, Division of Pediatric Cardiology, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - G F Qiao
- Department of Pharmacology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, China.
| | - B Y Li
- Department of Pharmacology, Harbin Medical University, Harbin, China.
| |
Collapse
|