1
|
Snelders M, Yildirim M, Danser AHJ, van der Pluijm I, Essers J. The Extracellular Matrix and Cardiac Pressure Overload: Focus on Novel Treatment Targets. Cells 2024; 13:1685. [PMID: 39451203 PMCID: PMC11505996 DOI: 10.3390/cells13201685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Heart failure is a significant health issue in developed countries, often stemming from conditions like hypertension, which imposes a pressure overload on the heart. Despite various treatment strategies for heart failure, many lack long-term effectiveness. A critical aspect of cardiac disease is the remodeling of the heart, where compensatory changes in the extracellular matrix exacerbate disease progression. This review explores the processes and changes occurring in the pressure-overloaded heart with respect to the extracellular matrix. It further summarizes current treatment strategies, and then focuses on novel treatment targets for maladaptive cardiac remodeling, derived from transverse aortic constriction-induced pressure overload animal models.
Collapse
Affiliation(s)
- Matthijs Snelders
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Meltem Yildirim
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - A. H. Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Vascular Surgery, Cardiovascular Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
2
|
Bauersachs J, López-Andrés N. Mineralocorticoid receptor in cardiovascular diseases-Clinical trials and mechanistic insights. Br J Pharmacol 2021; 179:3119-3134. [PMID: 34643952 DOI: 10.1111/bph.15708] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Aldosterone binds to the mineralocorticoid receptor (NR3C2), a transcription factor of the nuclear receptor family, present in the kidney and in various other non-epithelial cells including the heart and the vasculature. Indeed, extra-renal pathophysiological effects of this hormone have been characterized, extending its actions to the cardiovascular system. A growing body of clinical and pre-clinical evidence suggests that mineralocorticoid receptor overactivation plays an important pathophysiological role in cardiovascular remodelling by promoting cardiac hypertrophy, fibrosis, arterial stiffness and in inflammation and oxidative stress. The following review article outlines the role of mineralocorticoid receptor in cardiovascular disease with a focus on myocardial remodelling and heart failure (HF) including clinical trials as well as cellular and animal studies.
Collapse
Affiliation(s)
- Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Natalia López-Andrés
- Cardiovascular Translational Research. Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| |
Collapse
|
3
|
Changes in serum and intracardiac fibroblast growth factor 23 during the progression of left ventricular hypertrophy in hypertensive model rats. Clin Exp Nephrol 2018; 23:589-596. [PMID: 30539338 DOI: 10.1007/s10157-018-1680-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/04/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent clinical studies have demonstrated that serum fibroblast growth factor 23 (FGF23) levels have a significant association with left ventricular hypertrophy (LVH). Although LVH is commonly seen in hypertensive patients, the association between FGF23, hypertension, and LVH remains unclear. We aimed to examine the changes in serum and intracardiac FGF23 during the progression of hypertension using spontaneously hypertensive rats (SHR). METHODS Male SHR comprised the experimental group (HT group) and Wistar Kyoto rats served as controls. At 10 weeks, urinary and blood biochemical analyses and blood pressure measurements were performed for both the groups. At 18 weeks, the rats were sacrificed: urinary and blood biochemical analyses and real-time PCR were performed. RESULTS At 18 weeks, the relative heart weight and serum N-terminal pro-brain natriuretic peptide and aldosterone levels were significantly greater in the HT group. Serum calcium and phosphate levels were significantly lower, while serum FGF23 levels were significantly higher in the HT group compared to the control group. Further analyses showed that the mRNA expression of FGF23 in the heart was significantly increased in the HT group compared to the control group. Both serum FGF23 levels and intracardiac mRNA expression of FGF23 showed significant correlation with the relative heart weight. CONCLUSIONS During LVH progression, serum and intracardiac FGF23 increased in hypertension. Although it is unclear whether the change in FGF23 is the cause or result of LVH, the interaction between FGF23 and aldosterone may be associated with the development of LVH in hypertension.
Collapse
|
4
|
Oliveira-Junior SA, Martinez PF, Fan WYC, Nakatani BT, Pagan LU, Padovani CR, Cicogna AC, Okoshi MP, Okoshi K. Association between echocardiographic structural parameters and body weight in Wistar rats. Oncotarget 2018; 8:26100-26105. [PMID: 28212534 PMCID: PMC5432241 DOI: 10.18632/oncotarget.15320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/26/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The association between echocardiographic structural parameters and body weight (BW) during rat development has been poorly addressed. We evaluated echocardiographic variables: left ventricular (LV) end-diastolic (LVDD) and end-systolic (LVSD) diameters, LV diastolic posterior wall thickness (PWT), left atrial diameter (LA), and aortic diameter (AO) in function of BW during development.Results/Materials and Methods: Male Wistar rats (n = 328, BW: 302-702 g) were retrospectively used to construct regression models and 95% confidence intervals relating to cardiac structural parameters and BW. Adjusted indexes were significant to all relationships; the regression model for predicting LVDD (R2 = 0.678; p < 0.001) and AO (R2 = 0.567; p < 0.001) had the highest prediction coefficients and LA function the lowest prediction coefficient (R2 = 0.274; p < 0.01). These relationships underwent validation by performing echocardiograms on additional rats (n = 43, BW: 300-600 g) and testing whether results were within confidence intervals of our regressions. Prediction models for AO and LA correctly allocated 38 (88.4%) and 39 rats (90.7%), respectively, within the 95% confidence intervals. Regression models for LVDD, LVSD, and PWT included 27 (62.7%), 30 (69.8%), and 19 (44.2%) animals, respectively, within the 95% confidence intervals. CONCLUSIONS Increase in cardiac structures is associated with BW gain during rat growth. LA and AO can be correctly predicted using regression models; prediction of PWT and LV diameters is not accurate.
Collapse
Affiliation(s)
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - William Y C Fan
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Bruno T Nakatani
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Carlos R Padovani
- Botucatu Biosciences Institute, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Antonio C Cicogna
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
5
|
Gimenes R, Gimenes C, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, Cezar MDM, Guirado GN, Pagan LU, Chaer ID, Fernandes DC, Laurindo FR, Cicogna AC, Okoshi MP, Okoshi K. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus. Cardiovasc Diabetol 2018; 17:15. [PMID: 29343259 PMCID: PMC5771187 DOI: 10.1186/s12933-017-0657-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/26/2017] [Indexed: 01/02/2023] Open
Abstract
Background Increased reactive oxygen species (ROS) generation in diabetes mellitus (DM) is an important mechanism leading to diabetic cardiomyopathy. Apocynin, a drug isolated from the herb Picrorhiza kurroa, is considered an antioxidant agent by inhibiting NADPH oxidase activity and improving ROS scavenging. This study analyzed the influence of apocynin on cardiac remodeling in diabetic rats. Methods Six-month-old male Wistar rats were assigned into 4 groups: control (CTL, n = 15), control + apocynin (CTL + APO, n = 20), diabetes (DM, n = 20), and diabetes + apocynin (DM + APO, n = 20). DM was induced by streptozotocin. Seven days later, apocynin (16 mg/kg/day) or vehicle was initiated and maintained for 8 weeks. Left ventricular (LV) histological sections were used to analyze interstitial collagen fraction. NADPH oxidase activity was evaluated in LV samples. Comparisons between groups were performed by ANOVA for a 2 × 2 factorial design followed by the Bonferroni post hoc test. Results Body weight (BW) was lower and glycemia higher in diabetic animals. Echocardiogram showed increased left atrial diameter, LV diastolic diameter, and LV mass indexed by BW in both diabetic groups; apocynin did not affect these indices. LV systolic function was impaired in DM groups and unchanged by apocynin. Isovolumic relaxation time was increased in DM groups; transmitral E/A ratio was higher in DM + APO compared to DM. Myocardial functional evaluation through papillary muscle preparations showed impaired contractile and relaxation function in both DM groups at baseline conditions. After positive inotropic stimulation, developed tension (DT) was lower in DM than CTL. In DM + APO, DT had values between those in DM and CTL + APO and did not significantly differ from either group. Myocardial interstitial collagen fraction was higher in DM than CTL and did not differ between DM + APO and CTL + APO. Serum activity of antioxidant enzymes glutathione peroxidase, superoxide dismutase (SOD), and catalase was lower in DM than CTL; apocynin restored catalase and SOD levels in DM + APO. Myocardial NADPH oxidase activity did not differ between groups. Conclusion Apocynin restores serum antioxidant enzyme activity despite unchanged myocardial NADPH oxidase activity in diabetic rats.
Collapse
Affiliation(s)
- R Gimenes
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - C Gimenes
- Sagrado Coração University, Bauru, SP, Brazil
| | - C M Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - N P Xavier
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - D H S Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - A A H Fernandes
- Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M D M Cezar
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - G N Guirado
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - L U Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - I D Chaer
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - D C Fernandes
- Department of Cardiopneumology, Medical School, Sao Paulo University, USP, São Paulo, Brazil
| | - F R Laurindo
- Department of Cardiopneumology, Medical School, Sao Paulo University, USP, São Paulo, Brazil
| | - A C Cicogna
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - M P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - K Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, SP, Brazil. .,Departamento de Clinica Medica, Faculdade de Medicina de Botucatu, Sao Paulo State University, UNESP, Rubiao Junior, S/N, Botucatu, SP, CEP 18618-687, Brazil.
| |
Collapse
|
6
|
Lima ARR, Pagan LU, Damatto RL, Cezar MDM, Bonomo C, Gomes MJ, Martinez PF, Guizoni DM, Campos DHS, Damatto FC, Okoshi K, Okoshi MP. Effects of growth hormone on cardiac remodeling and soleus muscle in rats with aortic stenosis-induced heart failure. Oncotarget 2017; 8:83009-83021. [PMID: 29137319 PMCID: PMC5669945 DOI: 10.18632/oncotarget.20583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/29/2017] [Indexed: 12/18/2022] Open
Abstract
Background Skeletal muscle wasting is often observed in heart failure (HF). The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is impaired in HF. In this study, we evaluated the effects of GH on soleus muscle and cardiac remodeling in rats with aortic stenosis (AS)-induced HF. Methods AS was created by placing a stainless-steel clip on the ascending aorta. After clinically detecting HF, GH (2 mg/kg/day) was subcutaneously injected for 14 days (AS-GH group). Results were compared with those from Sham and non-treated AS groups. Transthoracic echocardiogram was performed before and after treatment. Protein expression was evaluated by Western blot and satellite cells activation by immunofluorescence. Statistical analyzes: ANOVA and Tukey or Kruskal-Wallis and Student-Newman-Keuls. Results Before treatment both AS groups presented a similar degree of cardiac injury. GH prevented body weight loss and attenuated systolic dysfunction. Soleus cross-sectional fiber areas were lower in both AS groups than Sham (Sham 3,556±447; AS 2,882±422; AS-GH 2,868±591 μm2; p=0.016). GH increased IGF-1 serum concentration (Sham 938±83; AS 866±116; AS-GH 1167±166 ng/mL; p<0.0001) and IGF-1 muscle protein expression and activated PI3K protein. Neural cell adhesion molecule (NCAM) immunofluorescence was increased in both AS groups. Catabolism-related intracellular pathways did not differ between groups. Conclusion Short-term growth hormone attenuates left ventricular systolic dysfunction in rats with aortic stenosis-induced HF. Despite preserving body weight, increasing serum and muscular IGF-1 levels, and stimulating PI3K muscle expression, GH does not modulate soleus muscle trophism, satellite cells activation or intracellular pathways associated with muscle catabolism.
Collapse
Affiliation(s)
- Aline R R Lima
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo L Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo D M Cezar
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Camila Bonomo
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana J Gomes
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Daniele M Guizoni
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Dijon H S Campos
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Felipe C Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, Brazil
| |
Collapse
|