1
|
Glen C, Morrow A, Roditi G, Hopkins T, Macpherson I, Stewart P, Petrie MC, Berry C, Epstein F, Lang NN, Mangion K. Cardiovascular sequelae of trastuzumab and anthracycline in long-term survivors of breast cancer. Heart 2024; 110:650-656. [PMID: 38103912 DOI: 10.1136/heartjnl-2023-323437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVES Long-term follow-up of patients treated with trastuzumab largely focuses on those with reduced left ventricular ejection fraction (LVEF) on treatment completion. This study sought to evaluate the prevalence of cardiovascular risk factors, overt cardiovascular disease and cardiac imaging abnormalities using cardiac magnetic resonance (CMR), in participants with normal LVEF on completion of trastuzumab±anthracycline therapy at least 5 years previously. METHODS Participants with human epidermal growth factor receptor 2-positive breast cancer treated with trastuzumab±anthracycline ≥5 years previously were identified from a clinical database. All participants had normal LVEF prior to, and on completion of, treatment. Participants underwent clinical cardiovascular evaluation, ECG, cardiac biomarker evaluation and CMR. Left ventricular systolic dysfunction (LVSD) was defined as LVEF <50%. RESULTS Forty participants were recruited between 15 March 2021 and 19 July 2022. Median time since completion of trastuzumab was 7.8 years (range 5.9-10.8 years) and 90% received prior anthracycline. 25% of participants had LVSD; median LVEF was 55.2% (Q1-Q3, 51.3-61.2). 30% of participants had N-terminal pro-B-type natriuretic peptide >125 pg/mL and 8% had high-sensitivity cardiac troponin T >14 ng/L. 33% of participants had a new finding of hypertension. 58% had total cholesterol >5.0 mmol/L, 43% had triglycerides >1.7 mmol/L and 5% had a new diagnosis of diabetes. CONCLUSIONS The presence of asymptomatic LVSD, abnormal cardiac biomarkers and cardiac risk factors in participants treated with trastuzumab and anthracycline at least 5 years previously is common, even in those with normal LVEF on completion of treatment. Our findings reinforce the relevance of comprehensive evaluation of cardiovascular risk factors following completion of cancer therapy, in addition to LVEF assessment.
Collapse
Affiliation(s)
- Claire Glen
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Andrew Morrow
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Giles Roditi
- Clinical Research Imaging Facility, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Tracey Hopkins
- Clinical Research Imaging Facility, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Iain Macpherson
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Philip Stewart
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Mark C Petrie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
- Regional Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK
| | - Colin Berry
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
- Cardiology, Golden Jubilee National Hospital, Clydebank, UK
| | - Fred Epstein
- School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, USA
| | - Ninian N Lang
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Kenneth Mangion
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
- Regional Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK
| |
Collapse
|
2
|
Naaktgeboren WR, Stuiver MM, van Harten WH, Aaronson NK, Scott JM, Sonke G, van der Wall E, Velthuis M, Leiner T, Teske AJ, May AM, Groen WG. Effects of exercise during chemotherapy for breast cancer on long-term cardiovascular toxicity. Open Heart 2023; 10:e002464. [PMID: 37903570 PMCID: PMC10619040 DOI: 10.1136/openhrt-2023-002464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVE Animal data suggest that exercise during chemotherapy is cardioprotective, but clinical evidence to support this is limited. This study evaluated the effect of exercise during chemotherapy for breast cancer on long-term cardiovascular toxicity. METHODS This is a follow-up study of two previously performed randomised trials in patients with breast cancer allocated to exercise during chemotherapy or non-exercise controls. Cardiac imaging parameters, including T1 mapping (native T1, extracellular volume fraction (ECV)), left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS), cardiorespiratory fitness, and physical activity levels, were acquired 8.5 years post-treatment. RESULTS In total, 185 breast cancer survivors were included (mean age 58.9±7.8 years), of whom 99% and 18% were treated with anthracyclines and trastuzumab, respectively. ECV and Native T1 were 25.3%±2.5% and 1026±51 ms in the control group, and 24.6%±2.8% and 1007±44 ms in the exercise group, respectively. LVEF was borderline normal in both groups, with an LVEF<50% prevalence of 22.5% (n=40/178) in all participants. Compared with control, native T1 was statistically significantly lower in the exercise group (β=-20.16, 95% CI -35.35 to -4.97). We found no effect of exercise on ECV (β=-0.69, 95% CI -1.62 to 0.25), LVEF (β=-1.36, 95% CI -3.45 to 0.73) or GLS (β=0.31, 95% CI -0.76 to 1.37). Higher self-reported physical activity levels during chemotherapy were significantly associated with better native T1 and ECV. CONCLUSIONS In long-term breast cancer survivors, exercise and being more physically active during chemotherapy were associated with better structural but not functional cardiac parameters. The high prevalence of cardiac dysfunction calls for additional research on cardioprotective measures, including alternative exercise regimens. TRIAL REGISTRATION NUMBER NTR7247.
Collapse
Affiliation(s)
- Willeke R Naaktgeboren
- Psychosocial Research and Epidemiology, Antoni van Leeuwenhoek Netherlands Cancer Institute, Amsterdam, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Martijn M Stuiver
- Psychosocial Research and Epidemiology, Antoni van Leeuwenhoek Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Quality of Life, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Wim H van Harten
- Psychosocial Research and Epidemiology, Antoni van Leeuwenhoek Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Health Technology and Services Research, University of Twente, Enschede, Netherlands
- Rijnstate Hospital, Arnhem, Netherlands
| | - Neil K Aaronson
- Psychosocial Research and Epidemiology, Antoni van Leeuwenhoek Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jessica M Scott
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Gabe Sonke
- Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Elsken van der Wall
- Division of Internal Medicine and Dermatology, University Medical Centre, Utrecht, The Netherlands
| | - Miranda Velthuis
- Netherlands Comprehensive Cancer Organisation, Nijmegen, The Netherlands
| | - Tim Leiner
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiology, UMC Utrecht, Utrecht, Netherlands
| | - Arco J Teske
- Cardiology, University Medical Centre, Utrecht, The Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Wim G Groen
- Department of Medicine for Older People, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Aging & Later Life, Amsterdam Public Health Research Institute, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Ageing & Vitality, Rehabilitation & Development, Amstermdam, Netherlands
| |
Collapse
|
3
|
Harries I, Biglino G, Ford K, Nelson M, Rego G, Srivastava P, Williams M, Berlot B, De Garate E, Baritussio A, Liang K, Baquedano M, Chavda N, Lawton C, Shearn A, Otton S, Lowry L, Nightingale AK, Carlos Plana J, Marks D, Emanueli C, Bucciarelli-Ducci C. Prospective multiparametric CMR characterization and MicroRNA profiling of anthracycline cardiotoxicity: A pilot translational study. IJC HEART & VASCULATURE 2022; 43:101134. [PMID: 36389268 PMCID: PMC9647504 DOI: 10.1016/j.ijcha.2022.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Abstract
Background Anthracycline cardiotoxicity is a significant clinical challenge. Biomarkers to improve risk stratification and identify early cardiac injury are required. Objectives The purpose of this pilot study was to prospectively characterize anthracycline cardiotoxicity using cardiovascular magnetic resonance (CMR), echocardiography and MicroRNAs (MiRNAs), and identify baseline predictors of LVEF recovery. Methods Twenty-four patients (age 56 range 18-75 years; 42 % female) with haematological malignancy scheduled to receive anthracycline chemotherapy (median dose 272 mg/m2 doxorubicin equivalent) were recruited and evaluated at three timepoints (baseline, completion of chemotherapy, and 6 months after completion of chemotherapy) with multiparametric 1.5 T CMR, echocardiography and circulating miRNAs sequencing. Results Seventeen complete datasets were obtained. CMR left ventricular ejection fraction (LVEF) fell significantly between baseline and completion of chemotherapy (61 ± 3 vs 53 ± 3 %, p < 0.001), before recovering significantly at 6-month follow-up (55 ± 3 %, p = 0.018). Similar results were observed for 3D echocardiography-derived LVEF and CMR-derived longitudinal, circumferential and radial feature-tracking strain. Patients were divided into tertiles according to LVEF recovery (poor recovery, partial recovery, good recovery). CMR-derived mitral annular plane systolic excursion (MAPSE) was significantly different at baseline in patients exhibiting poor LVEF recovery (11.7 ± 1.5 mm) in comparison to partial recovery (13.7 ± 2.7 mm), and good recovery (15.7 ± 3.1 mm; p = 0.028). Furthermore, baseline miRNA-181-5p and miRNA-221-3p expression were significantly higher in this group. T2 mapping increased significantly on completion of chemotherapy compared to baseline (54.0 ± 4.6 to 57.8 ± 4.9 ms, p = 0.001), but was not predictive of LVEF recovery. No changes to LV mass, extracellular volume fraction, T1 mapping or late gadolinium enhancement were observed. Conclusions Baseline CMR-derived MAPSE, circulating miRNA-181-5p, and miRNA-221-3p were associated with poor recovery of LVEF 6 months after completion of anthracycline chemotherapy, suggesting their potential predictive role in this context. T2 mapping increased significantly on completion of chemotherapy but was not predictive of LVEF recovery.
Collapse
Key Words
- CMR, cardiovascular magnetic resonance
- Cancer therapeutics-related cardiac dysfunction
- Cardio-oncology
- Cardiovascular magnetic resonance
- ECV, extracellular volume
- LAVi, left atrial volume indexed
- LGE, late gadolinium enhancement
- LV, left ventricle
- LVEF, left ventricular ejection fraction
- MAPSE, mitral annular plane systolic excursion
- MiRNAs, MicroRNAs
- iLVEDV, left ventricular end-diastolic volume indexed
- iLVESV, indexed left ventricular end-systolic volume indexed
Collapse
Affiliation(s)
- Iwan Harries
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Giovanni Biglino
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
- Myocardial Function – National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Bristol Biomedical Research Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Kerrie Ford
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Martin Nelson
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Gui Rego
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Prashant Srivastava
- Myocardial Function – National Heart and Lung Institute, Imperial College London, London, UK
| | - Matthew Williams
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Bostjan Berlot
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Estefania De Garate
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Anna Baritussio
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Kate Liang
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Mai Baquedano
- NIHR Bristol Biomedical Research Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Nikesh Chavda
- Bristol Heamatology and Oncology Centre, University Hospitals Bristol NHS Trust, Bristol United Kingdom, UK
| | - Christopher Lawton
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Andrew Shearn
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | | | | | - Angus K. Nightingale
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | | | - David Marks
- Bristol Heamatology and Oncology Centre, University Hospitals Bristol NHS Trust, Bristol United Kingdom, UK
| | - Costanza Emanueli
- Myocardial Function – National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Bristol Biomedical Research Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Chiara Bucciarelli-Ducci
- Royal Brompton and Harefield Hospitals, Guys’ and St Thomas NHS Foundation Trust, London
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, Kings College, London
| |
Collapse
|
4
|
Jiang J, Liu B, Hothi SS. Herceptin-Mediated Cardiotoxicity: Assessment by Cardiovascular Magnetic Resonance. Cardiol Res Pract 2022; 2022:1910841. [PMID: 35265371 PMCID: PMC8898877 DOI: 10.1155/2022/1910841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/12/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Herceptin (trastuzumab) is a recombinant, humanized, monoclonal antibody that targets the human epidermal growth factor receptor 2 (HER2) and is used in the treatment of HER2-positive breast and gastric cancers. However, it carries a risk of cardiotoxicity, manifesting as left ventricular (LV) systolic dysfunction, conventionally assessed for by transthoracic echocardiography. Clinical surveillance of cardiac function and discontinuation of trastuzumab at an early stage of LV systolic dysfunction allow for the timely initiation of heart failure drug therapies that can result in the rapid recovery of cardiac function in most patients. Often considered the reference standard for the noninvasive assessment of cardiac volume and function, cardiac magnetic resonance (CMR) imaging has superior reproducibility and accuracy compared to other noninvasive imaging modalities. However, due to limited availability, it is not routinely used in the serial assessment of cardiac function in patients receiving trastuzumab. In this article, we review the diagnostic and prognostic role of CMR in trastuzumab-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Jin Jiang
- Heart and Lung Centre, New Cross Hospital, Wolverhampton, UK
| | - Boyang Liu
- Heart and Lung Centre, New Cross Hospital, Wolverhampton, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sandeep S Hothi
- Heart and Lung Centre, New Cross Hospital, Wolverhampton, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Harries I, Berlot B, Ffrench-Constant N, Williams M, Liang K, De Garate E, Baritussio A, Biglino G, Plana JC, Bucciarelli-Ducci C. Cardiovascular magnetic resonance characterisation of anthracycline cardiotoxicity in adults with normal left ventricular ejection fraction. Int J Cardiol 2021; 343:180-186. [PMID: 34454967 DOI: 10.1016/j.ijcard.2021.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/08/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Anthracycline therapy may lead to changes in cardiac structure and function not detectable by solely evaluating left ventricular ejection fraction (LVEF). OBJECTIVES We hypothesized that cardiovascular magnetic resonance (CMR) would identify structural and functional myocardial abnormalities in anthracycline-treated cancer survivors with normal LVEF, compared to a matched control population. METHODS Forty-five cancer survivors (56 ± 16 yrs., 60% female) with normal LVEF (59.5 ± 4.1%) were studied a median of 11 months (range 3-36) following administration of 237 ± 83 mg/m2 anthracycline, and compared with forty-five healthy control subjects of similar age and sex (53 ± 16 yrs., 60% female) with normal LVEF (60.8 ± 2.4%) using 1.5 T CMR. RESULTS Significantly smaller indexed left ventricular mass (45.6 ± 8.7 vs 50.3 ± 10.1 g/m2, p = 0.02) and indexed myocardial cell volume (30.5 ± 5.7 vs 34.8 ± 7.2 ml/m2, p = 0.002) were evident in cancer survivors and the latter was inversely associated with cumulative anthracycline dose (r = -0.31, p = 0.02). Surrogate CMR markers of myocardial fibrosis were significantly increased in cancer survivors (native myocardial T1: 1021 ± 40 vs 996 ± 35 ms, p = 0.002; extracellular volume: 29.5 ± 4.5 vs 27.4 ± 2.3%, p = 0.006). CMR-derived feature-tracking global longitudinal strain (GLS) was significantly impaired in cancer survivors (2D GLS -18.3 ± 2.6 vs -20.0 ± 2.0%, p < 0.001; 3D GLS -14.5 ± 2.3 vs -16.4 ± 2.6%, p < 0.001). Parameters exhibited good to excellent (ICC = 0.86-0.98) inter- and intra-observer reproducibility. CONCLUSIONS Anthracycline-treated cancer survivors with normal LVEF have significant perturbations of LV mass, myocardial cell volume, native myocardial T1, ECV, CMR-derived 2D and 3D GLS, compared to controls, with good to excellent levels of inter- and intra-observer reproducibility.
Collapse
Affiliation(s)
- Iwan Harries
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, UK
| | - Bostjan Berlot
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, UK; University Medical Centre Ljubljana, Cardiology Department, Ljubljana, Slovenia
| | | | - Matthew Williams
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, UK
| | - Kate Liang
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, UK
| | - Estefania De Garate
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, UK
| | - Anna Baritussio
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, UK
| | - Giovanni Biglino
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, UK; National Heart and Lung Institute, Imperial College London, London, UK; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | | | - Chiara Bucciarelli-Ducci
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, UK; NIHR Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust, Bristol, UK.
| |
Collapse
|
6
|
de Baat EC, Naaktgeboren WR, Leiner T, Teske AJ, Habets J, Grotenhuis HB. Update in imaging of cancer therapy-related cardiac toxicity in adults. Open Heart 2021; 8:openhrt-2020-001506. [PMID: 33863836 PMCID: PMC8055139 DOI: 10.1136/openhrt-2020-001506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, prognosis of patients with cancer has strongly improved and the number of cancer survivors is rapidly growing. Despite this success, cancer treatment is associated with development of serious cardiovascular diseases including left ventricular (LV) systolic dysfunction, heart failure, valvular disease, myocardial infarction, arrhythmias or pericardial diseases. Serial non-invasive cardiac imaging is an important tool to detect early signs of cardiotoxicity, to allow for timely intervention and provide optimal circumstances for long-term prognosis. Currently, echocardiographic imaging is the method of choice for the evaluation of myocardial function during and after cancer therapy. However, 2D echocardiography may fail to detect subtle changes in myocardial function, potentially resulting in a significant delay of therapeutic intervention to impede advanced cardiac disease states with more overt systolic dysfunction. Strain imaging is a promising method for early detection of myocardial dysfunction and may predict future changes in LV ejection fraction. The use of three-dimensional echocardiography may overcome the limitations of 2D echocardiography with more precise and reproducible measurements of LV performance. Cardiac MRI is the gold standard for volumetric assessment and can also be used to perform myocardial tissue characterisation. Visualisation of oedema and fibrosis may provide insights into the degree and disease course of cardiotoxicity and underlying pathophysiological mechanisms. There is growing body of literature regarding the promising role of these advanced imaging modalities in early detection of cardiotoxicity. With this overview paper, new insights and recent results in literature regarding echocardiographic and cardiac magnetic resonance imaging of cancer therapy-related cardiac dysfunction in post-cancer therapy adults will be highlighted.
Collapse
Affiliation(s)
- Esmée C de Baat
- Pediatric Oncology, Princess Maxima Center, Utrecht, The Netherlands
| | - Willeke R Naaktgeboren
- Psychosocial Research and Epidemiology, Antoni van Leeuwenhoek Netherlands Cancer Institute, Amsterdam, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tim Leiner
- Radiology, University Medical Center Utrecht Imaging Division, Utrecht, The Netherlands
| | - Arco J Teske
- Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jesse Habets
- Radiology, University Medical Center Utrecht Imaging Division, Utrecht, The Netherlands
- Radiology, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Heynric B Grotenhuis
- Pediatric Cardiology, Wilhelmina Children's Hospital University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
7
|
Saunderson CED, Plein S, Manisty CH. Role of cardiovascular magnetic resonance imaging in cardio-oncology. Eur Heart J Cardiovasc Imaging 2021; 22:383-396. [PMID: 33404058 DOI: 10.1093/ehjci/jeaa345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022] Open
Abstract
Advances in cancer therapy have led to significantly longer cancer-free survival times over the last 40 years. Improved survivorship coupled with increasing recognition of an expanding range of adverse cardiovascular effects of many established and novel cancer therapies has highlighted the impact of cardiovascular disease in this population. This has led to the emergence of dedicated cardio-oncology services that can provide pre-treatment risk stratification, surveillance, diagnosis, and monitoring of cardiotoxicity during cancer therapies, and late effects screening following completion of treatment. Cardiovascular imaging and the development of imaging biomarkers that can accurately and reliably detect pre-clinical disease and enhance our understanding of the underlying pathophysiology of cancer treatment-related cardiotoxicity are becoming increasingly important. Multi-parametric cardiovascular magnetic resonance (CMR) is able to assess cardiac structure, function, and provide myocardial tissue characterization, and hence can be used to address a variety of important clinical questions in the emerging field of cardio-oncology. In this review, we discuss the current and potential future applications of CMR in the investigation and management of cancer patients.
Collapse
Affiliation(s)
- Christopher E D Saunderson
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Charlotte H Manisty
- Department of Cardio-Oncology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London EC1A 7BE, UK
| |
Collapse
|
8
|
Jafari F, Safaei AM, Hosseini L, Asadian S, Kamangar TM, Zadehbagheri F, Rezaeian N. The role of cardiac magnetic resonance imaging in the detection and monitoring of cardiotoxicity in patients with breast cancer after treatment: a comprehensive review. Heart Fail Rev 2020; 26:679-697. [PMID: 33029698 DOI: 10.1007/s10741-020-10028-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 01/04/2023]
Abstract
The use of chemotherapy medicines for breast cancer (BC) has been associated with an increased risk of cardiotoxicity. In recent years, there have been growing interests regarding the application of cardiovascular magnetic resonance (CMR) imaging, a safe and noninvasive modality, with the potential to identify subtle morphological and functional changes in the myocardium. In this investigation, we aimed to review the performance of various CMR methods in diagnosing cardiotoxicity in BC, induced by chemotherapy or radiotherapy. For this purpose, we reviewed the literature available in PubMed, MEDLINE, Cochrane, Google Scholar, and Scopus databases. Our literature review showed that CMR is a valuable modality for identifying and predicting subclinical cardiotoxicity induced by chemotherapy. The novel T1, T2, and extracellular volume mapping techniques may provide critical information about cardiotoxicity, in addition to other CMR features such as functional and structural changes. However, further research is needed to verify the exact role of these methods in identifying cardiotoxicity and patient management. Since multiple studies have reported the improvement of left ventricular performance following the termination of chemotherapy regimens, CMR remains an essential imaging tool for the prediction of cardiotoxicity and, consequently, decreases the mortality rate of BC due to heart failure.
Collapse
Affiliation(s)
- Fatemeh Jafari
- Department of Radiation Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.,Radiation Oncology Research Center (RORC), Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsane Maddah Safaei
- Radiation Oncology Research Center (RORC), Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Hosseini
- North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sanaz Asadian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Tara Molanaie Kamangar
- Radiation Oncology Research Center (RORC), Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nahid Rezaeian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Abstract
The era of modern oncology incorporates an ever-evolving personalized approach to hematological malignancies and solid tumors. As a result, patient survival rates have, in part, substantially improved, depending on the specific type of underlying malignancy. However, systemic therapies may come along with potential cardiotoxic effects resulting in heart failure with increased morbidity and mortality. Ultimately, patients may survive their malignancy but die as a result of cancer treatment. Cardiovascular magnetic resonance imaging has long been in use for the assessment of function and tissue characteristics in patients with various nonischemic cardiac diseases. Besides an introductory overview on the general definition of cardiotoxicity including potential underlying mechanisms, this review provides insight into the application of various cardiovascular magnetic resonance imaging techniques in the setting of cancer therapy-related cardiac and vascular toxicity. Early identification of cardiotoxic effects may allow for on-time therapy adjustment and/or cardioprotective measures to avoid subsequent long-term heart failure with increased mortality.
Collapse
|
10
|
Urzua Fresno C, Shalmon T, Calvillo Argüelles O, Wintersperger BJ, Thavendiranathan P. Cardiovascular Magnetic Resonance Relaxometry in Early Detection of Anthracycline Cardiotoxicity. CURRENT CARDIOVASCULAR IMAGING REPORTS 2020. [DOI: 10.1007/s12410-019-9524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Seraphim A, Westwood M, Bhuva AN, Crake T, Moon JC, Menezes LJ, Lloyd G, Ghosh AK, Slater S, Oakervee H, Manisty CH. Advanced Imaging Modalities to Monitor for Cardiotoxicity. Curr Treat Options Oncol 2019; 20:73. [PMID: 31396720 PMCID: PMC6687672 DOI: 10.1007/s11864-019-0672-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Early detection and treatment of cardiotoxicity from cancer therapies is key to preventing a rise in adverse cardiovascular outcomes in cancer patients. Over-diagnosis of cardiotoxicity in this context is however equally hazardous, leading to patients receiving suboptimal cancer treatment, thereby impacting cancer outcomes. Accurate screening therefore depends on the widespread availability of sensitive and reproducible biomarkers of cardiotoxicity, which can clearly discriminate early disease. Blood biomarkers are limited in cardiovascular disease and clinicians generally still use generic screening with ejection fraction, based on historical local expertise and resources. Recently, however, there has been growing recognition that simple measurement of left ventricular ejection fraction using 2D echocardiography may not be optimal for screening: diagnostic accuracy, reproducibility and feasibility are limited. Modern cancer therapies affect many myocardial pathways: inflammatory, fibrotic, metabolic, vascular and myocyte function, meaning that multiple biomarkers may be needed to track myocardial cardiotoxicity. Advanced imaging modalities including cardiovascular magnetic resonance (CMR), computed tomography (CT) and positron emission tomography (PET) add improved sensitivity and insights into the underlying pathophysiology, as well as the ability to screen for other cardiotoxicities including coronary artery, valve and pericardial diseases resulting from cancer treatment. Delivering screening for cardiotoxicity using advanced imaging modalities will however require a significant change in current clinical pathways, with incorporation of machine learning algorithms into imaging analysis fundamental to improving efficiency and precision. In the future, we should aspire to personalized rather than generic screening, based on a patient’s individual risk factors and the pathophysiological mechanisms of the cancer treatment they are receiving. We should aspire that progress in cardiooncology is able to track progress in oncology, and to ensure that the current ‘one size fits all’ approach to screening be obsolete in the very near future.
Collapse
Affiliation(s)
- Andreas Seraphim
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.,Institute of Cardiovascular Sciences, University College London, Chenies Mews, London, UK
| | - Mark Westwood
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.,Department of Cardio-oncology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - Anish N Bhuva
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.,Institute of Cardiovascular Sciences, University College London, Chenies Mews, London, UK
| | - Tom Crake
- Department of Cardio-oncology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - James C Moon
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.,Institute of Cardiovascular Sciences, University College London, Chenies Mews, London, UK
| | - Leon J Menezes
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - Guy Lloyd
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - Arjun K Ghosh
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.,Department of Cardio-oncology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - Sarah Slater
- Department of Haematology, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - Heather Oakervee
- Department of Oncology, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - Charlotte H Manisty
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK. .,Institute of Cardiovascular Sciences, University College London, Chenies Mews, London, UK. .,Department of Cardio-oncology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.
| |
Collapse
|
12
|
Gad MM, Saad AM, Al-Husseini MJ, Abushouk AI, Salahia S, Rehman KA, Riaz H, Ahmed HM. Temporal trends, ethnic determinants, and short-term and long-term risk of cardiac death in cancer patients: a cohort study. Cardiovasc Pathol 2019; 43:107147. [PMID: 31494524 DOI: 10.1016/j.carpath.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/14/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We evaluated the risk of cardiac death in patients with prior cancer diagnoses and compared risk by cancer type and ethnicity in a large US population. METHOD Utilizing the Surveillance, Epidemiology, and End Results database, data on patients with a cancer diagnosis between 2000 and 2014 were obtained. We calculated the standardized mortality ratio (SMR) of cardiac death after a cancer diagnosis and the excess risk per 10,000 person-years. We stratified the analysis according to the time interval between cancer and cardiac events, cancer site, cancer stage, and race. RESULTS A total of 4,671,989 patients with a cancer diagnosis were included, of which 163,255 died due to cardiac causes within 10 years of diagnosis. We found a significantly higher rate of cardiac death for cancer patients [SMR=1.16, 95% confidence interval (CI) 1.15-1.16] compared to the general population. When observed for each cancer site, the highest SMR was after a diagnosis of hepatocellular carcinoma (SMR=2.58, 95% CI 2.45-2.72), pancreatic cancer (SMR=2.36, 95% CI 2.25-2.47), and lung cancer (SMR=2.30, 95% CI 2.27-2.34). Patients with metastatic disease had a higher rate of cardiac death (SMR=2.16, 95% CI 2.13-2.19). When stratified by ethnicity, SMR for cardiac death was 1.76, 2.28, 3.68, 2.65, and 1.84 for whites, blacks, American Indians/Alaska Natives, Asians/Pacific Islanders, and Hispanics, respectively. CONCLUSIONS Cancer patients are more vulnerable to cardiac death than the general population, especially those with nonwhite ethnicity; liver, lung, and pancreatic cancers; and history of metastasis. Healthcare providers should be aware of this risk and pay particular attention to the highest-risk groups.
Collapse
Affiliation(s)
- Mohamed M Gad
- Cleveland Clinic, OH, USA; Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Anas M Saad
- Cleveland Clinic, OH, USA; Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Sami Salahia
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | | |
Collapse
|
13
|
Mrsic Z, Mousavi N, Hulten E, Bittencourt MS. The Prognostic Value of Late Gadolinium Enhancement in Nonischemic Heart Disease. Magn Reson Imaging Clin N Am 2019; 27:545-561. [DOI: 10.1016/j.mric.2019.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Cardiac MRI: a Promising Diagnostic Tool to Detect Cancer Therapeutics–Related Cardiac Dysfunction. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|