1
|
Junarta J, Rodriguez S, Ullah W, Siddiqui MU, Riley JM, Patel A, O'Neill P, Dikdan SJ, Fradin JJ, Rosen JL, Frisch DR. Comparison of very high-power short-duration, high-power short-duration, and low-power long-duration radiofrequency ablation for atrial fibrillation: A systematic review and network meta-analysis. Pacing Clin Electrophysiol 2023; 46:1609-1634. [PMID: 37971718 DOI: 10.1111/pace.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The optimal power and duration settings for radiofrequency (RF) atrial fibrillation (AF) ablation to improve efficacy and safety is unclear. We compared low-power long-duration (LPLD), high-power short-duration (HPSD), and very HPSD (vHPSD) RF settings for AF ablation. METHODS This network meta-analysis (NMA) was structured according to the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines. Medline, Scopus and Cochrane Central Register of Controlled Trials were systematically searched to identify relevant studies. Observational and randomized studies were included. Eligible studies compared outcomes in AF patients who underwent first-time RF ablation with the following settings: vHPSD (70-90 W, 3-10 s), HPSD (45-60 W, 5-10 s), or LPLD (20-40 W, 20-60 s). RESULTS Thirty-six studies comprising 10,375 patients were included (33% female). Frequentist NMA showed LPLD tended toward a lower odds of freedom from arrhythmia (FFA) versus HPSD (OR 0.93, 95% CI 0.86-1.00). There was no difference in FFA between vHPSD versus HPSD. Splitwise interval estimates showed a lower odds of FFA in LPLD versus vHPSD on direct (OR 0.78, 95% CI 0.65-0.93) and network estimates (OR 0.85, 95% CI 0.73-0.98). Frequentist NMA showed less total procedural (TP) time with HPSD versus LPLD (generic variance 1.06, 95% CI 0.83 to 1.29) and no difference between HPSD versus vHPSD. CONCLUSION This NMA shows improved procedural times in HPSD and vHPSD versus LPLD. Although HPSD tended toward improved odds of FFA compared to LPLD, the overall result was not statistically significant. The odds of FFA in LPLD was lower versus vHPSD on direct and network estimates on splitwise interval analysis. Large prospective head-to-head randomized trials are needed to validate HPSD and vHPSD settings.
Collapse
Affiliation(s)
- Joey Junarta
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Sebastian Rodriguez
- Jefferson Heart Institute, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Waqas Ullah
- Jefferson Heart Institute, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Muhammad U Siddiqui
- Jefferson Heart Institute, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Joshua M Riley
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Anjani Patel
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Parker O'Neill
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Sean J Dikdan
- Jefferson Heart Institute, Thomas Jefferson University Hospital, Philadelphia, USA
| | - James J Fradin
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Jake L Rosen
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Daniel R Frisch
- Jefferson Heart Institute, Thomas Jefferson University Hospital, Philadelphia, USA
| |
Collapse
|
2
|
Comparison between High-Power Short-Duration and Conventional Ablation Strategy in Atrial Fibrillation: An Updated Meta-Analysis. Cardiovasc Ther 2022; 2022:1065077. [PMID: 35975140 PMCID: PMC9355769 DOI: 10.1155/2022/1065077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
High-power short-duration (HPSD) setting during radiofrequency ablation has become an attempt to improve atrial fibrillation (AF) treatment outcomes. This study ought to compare the efficacy, safety, and effectiveness between HPSD and conventional settings. PubMed, Embase, and Cochrane Library were searched. Studies that compared HPSD and conventional radiofrequency ablation settings in AF patients were included while studies performed additional ablations on nonpulmonary vein targets without clear recording were excluded. Data were pooled with random-effect model. Efficacy endpoints include first-pass pulmonary vein isolation (PVI), acute pulmonary vein (PV) reconnection, free from AF, and free from atrial tachycardia (AT) during follow-up. Safety endpoints include esophagus injury rate and major complication rate. Effectiveness endpoints include complete PVI rate, total procedure time, PVI time, and PVI radiofrequency ablation (PVI RF) time. We included 22 studies with 3867 atrial fibrillation patients in total (2393 patients received HPSD radiofrequency ablation). Perioperatively, the HPSD group showed a higher first-pass PVI rate (risk ratio,
,
) and less acute PV reconnection rate (
,
) than the conventional group. During follow-up, free from AF (
,
) or AT (
,
) rate did not differ between HPSD and conventional groups 6-month postsurgery. However, the HPSD group showed both higher free from AF (
,
) and AT (
,
) rate than the conventional group 12-month postsurgery. The esophagus injury (
,
) and major complications (
,
) rates did not differ between the two groups. The HPSD group took shorter total procedure time (
95% CI: -43.10 to -24.33,
), PVI time (
95% CI: -25.00 to -18.21,
), and PVI RF time (
, 95% CI: -14.45 to -13.00,
) than conventional groups while complete procedure rate did not differ between two groups (
,
). HPSD setting during AF radiofrequency ablation has better effectiveness, efficacy, and similar safety compared with the conventional setting.
Collapse
|
3
|
Cai C, Wang J, Niu HX, Chu JM, Hua W, Zhang S, Yao Y. Optimal Lesion Size Index for Pulmonary Vein Isolation in High-Power Radiofrequency Catheter Ablation of Atrial Fibrillation. Front Cardiovasc Med 2022; 9:869254. [PMID: 35463774 PMCID: PMC9021528 DOI: 10.3389/fcvm.2022.869254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although both high-power (HP) ablation and lesion size index (LSI) are novel approaches to make effective lesions during pulmonary vein isolation (PVI) for atrial fibrillation (AF), the optimal LSI in HP ablation for PVI is still unclear. Our study sought to explore the association between LSI and acute conduction gap formation and investigate the optimal LSI in HP ablation for PVI. Methods A total of 105 consecutive patients with AF who underwent HP ablation guided by LSI (LSI-guided HP) for PVI in our institute between June 2019 and July 2020 were retrospectively enrolled. Each ipsilateral PV circle was subdivided into four segments, and ablation power was set to 50 W with target LSI values at 5.0 and 4.0 for anterior and posterior walls, respectively. We compared the LSI values with and without acute conduction gaps after the initial first-pass PVI. Results PVI was achieved in all patients, and the incidence of first-pass PVI was 78.1% (82/105). A total of 6,842 lesion sites were analyzed, and the acute conduction gaps were observed in 23 patients (21.9%) with 45 (0.7%) lesion points. The gap formation was significantly associated with lower LSI (3.9 ± 0.4 vs. 4.6 ± 0.4, p < 0.001), lower force-time integral (82.6 ± 24.6 vs. 120.9 ± 40.4 gs, p < 0.001), lower mean contact force (5.7 ± 2.4 vs. 8.5 ± 2.8 g, p < 0.001), shorter ablation duration (10.5 ± 3.6 vs. 15.4 ± 6.4 s, p < 0.001), lower mean temperature (34.4 ± 1.4 vs. 35.6 ± 2.6°C, p < 0.001), and longer interlesion distance (4.4 ± 0.3 vs. 4.3 ± 0.4 mm, p = 0.031). As per the receiver operating characteristic analysis, the LSI had the highest predictive value for gap formation in all PVs segments, with a cutoff of 4.35 for effective ablation (sensitivity 80.0%; specificity 75.4%, areas under the curve: 0.87). The LSI of 4.55 and 3.95 had the highest predictive value for gap formation for the anterior and posterior segments of PVs, respectively. Conclusion Using LSI-guided HP ablation for PVI, more than 4.35 of LSI for all PVs segments showed the best predictive value to avoid gap formation for achieving effective first-pass PVI. The LSI of 4.55 for the anterior wall and 3.95 for the posterior wall were the best cutoff values for predicting gap formation, respectively.
Collapse
Affiliation(s)
- Chi Cai
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Wang
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hong-Xia Niu
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jian-Min Chu
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei Hua
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shu Zhang
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Yao
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Xu M, Yang Y, Zhang D, Jiang W. Meta-analysis of high power short duration in atrial fibrillation ablation - a superior efficient ablation strategy. Acta Cardiol 2022; 77:14-32. [PMID: 34218737 DOI: 10.1080/00015385.2021.1939512] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The high power short duration (HPSD) approach was hoped to further improve the efficacy and safety in radiofrequency ablation of atrial fibrillation (AF), compared with Low power long duration (LPLD). However, the conclusion was controversial based on the previous limited data. The aim of this meta-analysis was to evaluate whether the clinical benefits of HPSD are superior to that of LPLD. METHODS The PubMed, OVID, the Cochrane Library, and Elsevier's ScienceDirect databases were searched for clinical studies to compare HPSD and LPLD approach by simple search strings benefiting to a wider screened scope. RESULTS Fifteen trials with 3255 patients were included in this analysis. Pooled analyses suggested that HPSD was associated with a lower recurrence of atrial tachyarrhythmias (ATAs) at 1-year follow-up (OR: 0.49; 95% CI: 0.35 to 0.67, p < .0001), benefitted from AF recurrence reduced (OR: 0.46; 95% CI: 0.31 to 0.67, p < .0001), rather than atrial tachycardia/atrial flutter (AT/AFL), but similar at 6 months follow-up, with a decreased oesophageal thermal injury (ETI) (OR: 0.48; 95% CI: 0.30 to 0.77, p = .002). Meanwhile, the HPSD approach benefitted to increase first-pass pulmonary vein isolation (FPI) (OR: 0.47; 95% CI: 0.34 to 0.64, p < .00001) and decrease acute pulmonary vein re-isolation (PVR) (OR: 0.45; 95% CI: 0.35 to 0.58, p < .00001), both mainly embodied in left pulmonary veins (PVs). HPSD showed a decreased procedural time (SMD: -0.95; 95% CI: -1.06 to -0.85, p < .00001), ablation number for pulmonary vein isolation (PVI) (SMD: -0.41; 95% CI: -0.58 to -0.24, p < .00001) and fluoroscopy time (SMD: -0.22; 95% CI: -0.32 to -0.12, p < .0001), which benefits from PVI + additional ablation strategy (SMD: -0.33; 95% CI: -0.46 to -0.21, p < .0001). CONCLUSIONS The HPSD approach was associated with decreasing post-ablation AF recurrence in the 1-year follow-up, ETI, acute PVR (increasing FPI correspondingly), procedural time, ablation number for PVI and fluoroscopy time, benefitted to improve clinical outcomes and procedural process with improved safety.
Collapse
Affiliation(s)
- Min Xu
- Department of Cardiology, The Second Affiliated Hospital of North Sichuan Medical College (Mianyang 404 Hospital), Mianyang, SiChuan, China
| | - Yan Yang
- Department of Cardiology, The Second Affiliated Hospital of North Sichuan Medical College (Mianyang 404 Hospital), Mianyang, SiChuan, China
| | - Dayong Zhang
- Department of Cardiology, The Second Affiliated Hospital of North Sichuan Medical College (Mianyang 404 Hospital), Mianyang, SiChuan, China
| | - Weifeng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| |
Collapse
|
5
|
Safety and Efficacy of High Power Shorter Duration Ablation Guided by Ablation Index or Lesion Size Index in Atrial Fibrillation Ablation: A Systematic Review and Meta-Analysis. J Interv Cardiol 2021; 2021:5591590. [PMID: 34149322 PMCID: PMC8192211 DOI: 10.1155/2021/5591590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 01/11/2023] Open
Abstract
Background High power shorter duration (HPSD) ablation may lead to safe and rapid lesion formation. However, the optimal radio frequency power to achieve the desired ablation index (AI) or lesion size index (LSI) is insubstantial. This analysis aimed to appraise the clinical safety and efficacy of HPSD guided by AI or LSI (HPSD-AI or LSI) in patients with atrial fibrillation (AF). Methods The Medline, PubMed, Embase, Web of Science, and the Cochrane Library databases from inception to November 2020 were searched for studies comparing HPSD-AI or LSI and low power longer duration (LPLD) ablation. Results Seven trials with 1013 patients were included in the analysis. The analyses verified that HPSD-AI or LSI revealed benefits of first-pass pulmonary vein isolation (PVI) (RR: 1.28; 95% CI: 1.05–1.56, P = 0.01) and acute pulmonary vein reconnection (PVR) (RR: 0.65; 95% CI: 0.48–0.88, P = 0.005) compared with LPLD. HPSD-AI or LSI showed higher freedom from atrial tachyarrhythmia (AT) (RR = 1.32, 95% CI: 1.14–1.53, P = 0.0002) in the subgroup analysis of studies with PVI ± (with or without additional ablation beyond PVI). HPSD-AI or LSI could short procedural time (WMD: −22.81; 95% CI, −35.03 to −10.60, P = 0.0003), ablation time (WMD: −10.80; 95% CI: −13.14 to −8.46, P < .00001), and fluoroscopy time (WMD: −7.71; 95% CI: −13.71 to −1.71, P = 0.01). Major complications and esophageal lesion in HPSD-AI or LSI group were no more than LDLP group (RR: 0.58; 95% CI: 0.20–1.69, P = 0.32) and (RR: 0.84; 95% CI: 0.43–1.61, P = 0.59). Conclusions HPSD-AI or LSI was efficient for treating AF with shorting procedural, ablation, and fluoroscopy time, higher first-pass PVI, and reducing acute PVR and may increase freedom from AT for patients with additional ablation beyond PVI compared with LPLD. Moreover, complications and esophageal lesion were low and no different between two groups.
Collapse
|