1
|
Nakajima A, Shibuya T, Yao T, Fujimura T, Murayama K, Okumura K, Nagahara A, Seko Y. Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in Dextran Sulfate Sodium-Induced Murine Model of Ulcerative Colitis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:539. [PMID: 38674185 PMCID: PMC11051726 DOI: 10.3390/medicina60040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024]
Abstract
Oxidative stress is implicated in the pathogenesis of various acute disorders including ischemia/reperfusion injury, ultraviolet/radiation burn, as well as chronic disorders such as dyslipidemia, atherosclerosis, diabetes mellitus, chronic renal disease, and inflammatory bowel disease (IBD). However, the precise mechanism involved remains to be clarified. We formerly identified a novel apoptosis-inducing humoral protein, in a hypoxia/reoxygenation-conditioned medium of cardiac myocytes, which proved to be 69th tyrosine-sulfated eukaryotic translation initiation factor 5A (eIF5A). We named this novel tyrosine-sulfated secreted form of eIF5A Oxidative Stress-Responsive Apoptosis-Inducing Protein (ORAIP). To investigate the role of ORAIP in a dextran sulfate sodium (DSS)-induced murine model of ulcerative colitis (UC), we analyzed the effects of in vivo treatment with anti-ORAIP neutralizing monoclonal antibody (mAb) on the DSS-induced disease exacerbation. The body weight in anti-ORAIP mAb-treated group was significantly heavier than that in a mouse IgG-treated control group on day 8 of DSS-treatment ((85.21 ± 1.03%) vs. (77.38 ± 2.07%); (mean ± SE0, n = 5 each, p < 0.01, t-test). In vivo anti-ORAIP mAb-treatment also significantly suppressed the shortening of colon length as well as Disease Activity Index (DAI) score ((5.00 ± 0.44) vs. (8.20 ± 0.37); (mean ± SE), n = 5 each, p < 0.001, t-test) by suppressing inflammation of the rectal tissue and apoptosis of intestinal mucosal cells. These data reveal the pivotal role of ORAIP in DSS-induced oxidative stress involved in an animal model of UC.
Collapse
Affiliation(s)
- Akihito Nakajima
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takako Yao
- Division of Cardiovascular Medicine, Institute for Adult Diseases, Asahi Life Foundation, Tokyo 103-0002, Japan
| | - Tsutomu Fujimura
- Laboratory of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Kimie Murayama
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshinori Seko
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
2
|
Yang FF, Zhou JZ, Xu XL, Hu T, Liu JQ, Wu YX, Wei B, Ma LY. Discovery of 1,3,4-oxadiazole derivatives containing a bisamide moiety as a novel class of potential cardioprotective agents. Eur J Med Chem 2022; 239:114526. [PMID: 35716515 DOI: 10.1016/j.ejmech.2022.114526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
Myocardial injury is a nonnegligible problem in cardiovascular diseases and cancer therapy. The functional feature of N-containing heterocycles in the cardiovascular field has attracted much attention in recent years. Herein, we discovered a lead compound 12a containing 1,3,4-oxadiazole by extensive screening of anticancer derivatives containing nitrogen-heterocycle, which exhibited potential protective activity against oxidative stress in cardiomyocytes. Follow-up structure-activity relationship (SAR) studies also highlighted the role of substitution sites and bisamide moiety in enhancing the protective activity against oxidative stress. Specifically, compound 12d exhibited low cytotoxicity under high concentration and potent myocardial protection against oxidative stress in H9c2 cells. Preliminary mechanistic studies showed compound 12d could decrease the expression of cardiac hypertrophy and oxidative stress-related proteins/genes and reduce mitochondria-mediated cell apoptosis, thereby enhancing the cell vitality of injured cardiomyocytes. In this study, 1,3,4-oxadiazole may represent a novel pharmacophore that possesses potential myocardial protection and provides more choices for future optimization of cardiovascular drugs, especially for the treatment of onco-cardiology.
Collapse
Affiliation(s)
- Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jin-Zhu Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xue-Li Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Ting Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jian-Quan Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Ya-Xi Wu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; China Meheco Topfond Pharmaceutical Co., Zhumadian, 463000, PR China.
| |
Collapse
|