1
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
2
|
Ren M, Ye X, Ouyang C, Da Q, Xue W, Chen P. JMJD2A mediates transcriptional activation of SFRP4 and regulates oxidative stress and mitochondrial dysfunction in heart failure. Pathol Int 2024; 74:210-221. [PMID: 38411359 DOI: 10.1111/pin.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
The importance of mitochondrial dysfunction and oxidative stress has been indicated in the progression of heart failure (HF). The molecular mechanisms, however, remain to be fully elucidated. This study aimed to explore the role and underlying mechanism of secreted frizzled-related protein 4 (SFRP4) in these two events in HF. Mice with HF were developed using transverse aortic constriction, and hematoxylin-eosin staining, MASSON staining, and Terminal deoxynucleotidyl transferase (TdT)-mediated 2'-Deoxyuridine 5'- Triphosphate nick end labeling (TUNEL assays) were conducted to detect morphological damage in the myocardial tissues of mice. HL-1 mouse cardiomyocytes were induced with isoproterenol (ISO), and cell viability and apoptosis were examined using cell counting kit-8 and TUNEL assays. SFRP4 and Jumonji domain-containing protein 2A (JMJD2A) were highly expressed in myocardial tissues. Suppression of SFRP4 alleviated apoptosis and fibrosis in myocardial tissues of mice. In addition, the extent of mitochondrial dysfunction and oxidative stress in damaged myocardial tissues and HL-1 cells was mitigated by SFRP4 inhibition as well. JMJD2A catalyzed demethylation modification of the SFRP4 promoter, thus promoting SFRP4 transcription in the development of HF. JMJD2A is responsible for SFRP4 transcription activation in the failing hearts of mice. Blockade of JMJD2A or SFRP4 might be a novel therapy effective in mitigating HF progression.
Collapse
Affiliation(s)
- Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xiaoqiang Ye
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Chun Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qing'en Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Weiwei Xue
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Piji Chen
- Department of Clinical Laboratory, Yantian People's Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Xie J, Lin H, Zuo A, Shao J, Sun W, Wang S, Song J, Yao W, Luo Y, Sun J, Wang M. The JMJD family of histone demethylase and their intimate links to cardiovascular disease. Cell Signal 2024; 116:111046. [PMID: 38242266 DOI: 10.1016/j.cellsig.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The incidence rate and mortality rate of cardiovascular disease rank first in the world. It is associated with various high-risk factors, and there is no single cause. Epigenetic modifications, such as DNA methylation or histone modification, actively participate in the initiation and development of cardiovascular diseases. Histone lysine methylation is a type of histone post-translational modification. The human Jumonji C domain (JMJD) protein family consists of more than 30 members. JMJD proteins participate in many key nuclear processes and play a key role in the specific regulation of gene expression, DNA damage and repair, and DNA replication. Importantly, increasing evidence shows that JMJD proteins are abnormally expressed in cardiovascular diseases, which may be a potential mechanism for the occurrence and development of these diseases. Here, we discuss the key roles of JMJD proteins in various common cardiovascular diseases. This includes histone lysine demethylase, which has been studied in depth, and less-studied JMJD members. Furthermore, we focus on the epigenetic changes induced by each JMJD member, summarize recent research progress, and evaluate their relationship with cardiovascular diseases and therapeutic potential.
Collapse
Affiliation(s)
- Jiarun Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haoyu Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Anna Zuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junqiao Shao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoting Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianda Song
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wang Yao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanyu Luo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Petrikas M, Wingert RA. Slow down my beating heart: induction of cardiac fibrosis by Iroquois homeobox 2. Tissue Barriers 2024:2309036. [PMID: 38282252 DOI: 10.1080/21688370.2024.2309036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Cardiovascular diseases are a significant global health challenge and pervasive cause of mortality worldwide. Heart failure due to cardiovascular disease is characterized by the inability of the heart to pump blood efficiently to meet the metabolic demands of the body. The pathophysiology of heart failure involves myocardial remodeling due to excessive deposition of extracellular matrix proteins by cardiac myofibroblasts - structural changes which impair contractility, reduce compliance, and ultimately reduce stroke volume. Now, a recent report has uncovered an essential role for Iroquois homeobox 2 in the transcriptional regulation of cardiac fibrosis, illuminating new mechanistic insights that can be applied to developing future clinical therapies.
Collapse
Affiliation(s)
- Madeline Petrikas
- Department of Biological Sciences, University of Notre Dame, Notre Dame, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, USA
| |
Collapse
|
5
|
Ma ZG, Yuan YP, Fan D, Zhang X, Teng T, Song P, Kong CY, Hu C, Wei WY, Tang QZ. IRX2 regulates angiotensin II-induced cardiac fibrosis by transcriptionally activating EGR1 in male mice. Nat Commun 2023; 14:4967. [PMID: 37587150 PMCID: PMC10432509 DOI: 10.1038/s41467-023-40639-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Cardiac fibrosis is a common feature of chronic heart failure. Iroquois homeobox (IRX) family of transcription factors plays important roles in heart development; however, the role of IRX2 in cardiac fibrosis has not been clarified. Here we report that IRX2 expression is significantly upregulated in the fibrotic hearts. Increased IRX2 expression is mainly derived from cardiac fibroblast (CF) during the angiotensin II (Ang II)-induced fibrotic response. Using two CF-specific Irx2-knockout mouse models, we show that deletion of Irx2 in CFs protect against pathological fibrotic remodelling and improve cardiac function in male mice. In contrast, Irx2 gain of function in CFs exaggerate fibrotic remodelling. Mechanistically, we find that IRX2 directly binds to the promoter of the early growth response factor 1 (EGR1) and subsequently initiates the transcription of several fibrosis-related genes. Our study provides evidence that IRX2 regulates the EGR1 pathway upon Ang II stimulation and drives cardiac fibrosis.
Collapse
Affiliation(s)
- Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Peng Song
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, PR China.
- Cardiovascular Research Institute of Wuhan University, 430060, Wuhan, PR China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, 430060, Wuhan, PR China.
| |
Collapse
|
6
|
Luan Y, Guo G, Luan Y, Yang Y, Yuan R. Single-cell transcriptional profiling of hearts during cardiac hypertrophy reveals the role of MAMs in cardiomyocyte subtype switching. Sci Rep 2023; 13:8339. [PMID: 37221368 DOI: 10.1038/s41598-023-35464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
Pathological cardiac hypertrophy is the main predecessor of heart failure. Its pathology is sophisticated, and its progression is associated with multiple cellular processes. To explore new therapeutic approaches, more precise examination of cardiomyocyte subtypes and involved biological processes is required in response to hypertrophic stimuli. Mitochondria and the endoplasmic reticulum (ER) are two crucial organelles associated with the progression of cardiac hypertrophy and are connected through junctions known as mitochondria-associated endoplasmic reticulum membranes (MAMs). Although MAM genes are altered in cardiac hypertrophy, the importance of MAMs in cardiac hypertrophy and the expression pattern of MAMs in certain cardiac cell types require a comprehensive analysis. In this study, we analyzed the temporal expression of MAM proteins in the process of cardiac hypertrophy and observed that MAM-related proteins preferentially accumulated in cardiomyocytes at the initial stage of cardiac hypertrophy and underwent a gradual decline, which was synchronized with the proportion of two cardiomyocyte subtypes (CM2 and CM3). Meanwhile, these subtypes went through a functional switch during cardiac hypertrophy. Trajectory analysis suggested that there was a differentiation trajectory of cardiomyocyte subtypes from high to low MAM protein expression. Distinct regulon modules across different cardiomyocyte cell types were revealed by transcriptional regulatory network analysis. Furthermore, scWGCNA revealed that MAM-related genes were clustered into a module that correlated with diabetic cardiomyopathy. Altogether, we identified cardiomyocyte subtype transformation and the potential critical transcription factors involved, which may serve as therapeutic targets in combating cardiac hypertrophy.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Guangyu Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| | - Ruixia Yuan
- Clinical Big Data Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|