1
|
Shaw DC, Kondabolu K, Walsh KG, Shi W, Rillosi E, Hsiung M, Eden UT, Richardson RM, Kramer MA, Chu CJ, Han X. Photothrombosis induced cortical stroke produces electrographic epileptic biomarkers in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582958. [PMID: 38496541 PMCID: PMC10942311 DOI: 10.1101/2024.03.01.582958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Objective Interictal epileptiform spikes, high-frequency ripple oscillations, and their co-occurrence (spike ripples) in human scalp or intracranial voltage recordings are well-established epileptic biomarkers. While clinically significant, the neural mechanisms generating these electrographic biomarkers remain unclear. To reduce this knowledge gap, we introduce a novel photothrombotic stroke model in mice that reproduces focal interictal electrographic biomarkers observed in human epilepsy. Methods We induced a stroke in the motor cortex of C57BL/6 mice unilaterally (N=7) using a photothrombotic procedure previously established in rats. We then implanted intracranial electrodes (2 ipsilateral and 2 contralateral) and obtained intermittent local field potential (LFP) recordings over several weeks in awake, behaving mice. We evaluated the LFP for focal slowing and epileptic biomarkers - spikes, ripples, and spike ripples - using both automated and semi-automated procedures. Results Delta power (1-4 Hz) was higher in the stroke hemisphere than the non-stroke hemisphere in all mice ( p <0.001). Automated detection procedures indicated that compared to the non-stroke hemisphere, the stroke hemisphere had an increased spike ripple ( p =0.006) and spike rates ( p =0.039), but no change in ripple rate ( p =0.98). Expert validation confirmed the observation of elevated spike ripple rates ( p =0.008) and a trend of elevated spike rate ( p =0.055) in the stroke hemisphere. Interestingly, the validated ripple rate in the stroke hemisphere was higher than the non-stroke hemisphere ( p =0.031), highlighting the difficulty of automatically detecting ripples. Finally, using optimal performance thresholds, automatically detected spike ripples classified the stroke hemisphere with the best accuracy (sensitivity 0.94, specificity 0.94). Significance Cortical photothrombosis-induced stroke in commonly used C57BL/6 mice produces electrographic biomarkers as observed in human epilepsy. This model represents a new translational cortical epilepsy model with a defined irritative zone, which can be broadly applied in transgenic mice for cell type specific analysis of the cellular and circuit mechanisms of pathologic interictal activity. Key Points Cortical photothrombosis in mice produces stroke with characteristic intermittent focal delta slowing.Cortical photothrombosis stroke in mice produces the epileptic biomarkers spikes, ripples, and spike ripples.All biomarkers share morphological features with the corresponding human correlate.Spike ripples better lateralize to the lesional cortex than spikes or ripples.This cortical model can be applied in transgenic mice for mechanistic studies.
Collapse
|
2
|
Johnson KJ, Moy B, Rensing N, Robinson A, Ly M, Chengalvala R, Wong M, Galindo R. Functional neuropathology of neonatal hypoxia-ischemia by single-mouse longitudinal electroencephalography. Epilepsia 2022; 63:3037-3050. [PMID: 36054439 PMCID: PMC10176800 DOI: 10.1111/epi.17403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Neonatal cerebral hypoxia-ischemia (HI) results in symptomatic seizures and long-term neurodevelopmental disability. The Rice-Vannucci model of rodent neonatal HI has been used extensively to examine and translate the functional consequences of acute and chronic HI-induced encephalopathy. Yet, longitudinal electrophysiological characterization of this brain injury model has been limited by the size of the neonatal mouse's head and postnatal maternal dependency. We overcome this challenge by employing a novel method of longitudinal single-mouse electroencephalography (EEG) using chronically implanted subcranial electrodes in the term-equivalent mouse pup. We characterize the neurophysiological disturbances occurring during awake and sleep states in the acute and chronic phases following newborn brain injury. METHODS C57BL/6 mice underwent long-term bilateral subcranial EEG and electromyographic electrode placement at postnatal day 9 followed by unilateral carotid cauterization and exposure to 40 minutes of hypoxia the following day. EEG recordings were obtained prior, during, and intermittently after the HI procedure from postnatal day 10 to weaning age. Quantitative EEG and fast Fourier transform analysis were used to evaluate seizures, cortical cerebral dysfunction, and disturbances in vigilance states. RESULTS We observed neonatal HI-provoked electrographic focal and bilateral seizures during or immediately following global hypoxia and most commonly contralateral to the ischemic injury. Spontaneous chronic seizures were not seen. Injured mice developed long-term asymmetric EEG background attenuation in all frequencies and most prominently during non-rapid eye movement (NREM) sleep. HI mice also showed transient impairments in vigilance state duration and transitions during the first 2 days following injury. SIGNIFICANCE The functional burden of mouse neonatal HI recorded by EEG resembles closely that of the injured human newborn. The use of single-mouse longitudinal EEG in this immature model can advance our understanding of the developmental and pathophysiological mechanisms of neonatal cerebral injury and help translate novel therapeutic strategies against this devastating condition.
Collapse
Affiliation(s)
- Kevin J Johnson
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brianna Moy
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicholas Rensing
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexia Robinson
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Ly
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ramya Chengalvala
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Wong
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rafael Galindo
- Department of Neurology, Division of Pediatric & Developmental Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Hamdy N, Eide S, Sun HS, Feng ZP. Animal models for neonatal brain injury induced by hypoxic ischemic conditions in rodents. Exp Neurol 2020; 334:113457. [PMID: 32889009 DOI: 10.1016/j.expneurol.2020.113457] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia and resulting encephalopathies are of significant concern. Intrapartum asphyxia is a leading cause of neonatal death globally. Among surviving infants, there remains a high incidence of hypoxic-ischemic encephalopathy due to neonatal hypoxic-ischemic brain injury, manifesting as mild conditions including attention deficit hyperactivity disorder, and debilitating disorders such as cerebral palsy. Various animal models of neonatal hypoxic brain injury have been implemented to explore cellular and molecular mechanisms, assess the potential of novel therapeutic strategies, and characterize the functional and behavioural correlates of injury. Each of the animal models has individual advantages and limitations. The present review looks at several widely-used and alternative rodent models of neonatal hypoxia and hypoxia-ischemia; it highlights their strengths and limitations, and their potential for continued and improved use.
Collapse
Affiliation(s)
- Nancy Hamdy
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sarah Eide
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
4
|
Burnsed J, Skwarzyńska D, Wagley PK, Isbell L, Kapur J. Neuronal Circuit Activity during Neonatal Hypoxic-Ischemic Seizures in Mice. Ann Neurol 2019; 86:927-938. [PMID: 31509619 DOI: 10.1002/ana.25601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To identify circuits active during neonatal hypoxic-ischemic (HI) seizures and seizure propagation using electroencephalography (EEG), behavior, and whole-brain neuronal activity mapping. METHODS Mice were exposed to HI on postnatal day 10 using unilateral carotid ligation and global hypoxia. EEG and video were recorded for the duration of the experiment. Using immediate early gene reporter mice, active cells expressing cfos were permanently tagged with reporter protein tdTomato during a 90-minute window. After 1 week, allowing maximal expression of the reporter protein, whole brains were processed, lipid cleared, and imaged with confocal microscopy. Whole-brain reconstruction and analysis of active neurons (colocalized tdTomato/NeuN) were performed. RESULTS HI resulted in seizure behaviors that were bilateral or unilateral tonic-clonic and nonconvulsive in this model. Mice exhibited characteristic EEG background patterns such as burst suppression and suppression. Neuronal activity mapping revealed bilateral motor cortex and unilateral, ischemic somatosensory cortex, lateral thalamus, and hippocampal circuit activation. Immunohistochemical analysis revealed regional differences in myelination, which coincide with these activity patterns. Astrocytes and blood vessel endothelial cells also expressed cfos during HI. INTERPRETATION Using a combination of EEG, seizure semiology analysis, and whole-brain neuronal activity mapping, we suggest that this rodent model of neonatal HI results in EEG patterns similar to those observed in human neonates. Activation patterns revealed in this study help explain complex seizure behaviors and EEG patterns observed in neonatal HI injury. This pattern may be, in part, secondary to regional differences in development in the neonatal brain. ANN NEUROL 2019;86:927-938.
Collapse
Affiliation(s)
- Jennifer Burnsed
- Department of Pediatrics, University of Virginia, Charlottesville, VA.,Department of Neurology, University of Virginia, Charlottesville, VA
| | - Daria Skwarzyńska
- Department of Pediatrics, University of Virginia, Charlottesville, VA
| | - Pravin K Wagley
- Department of Pediatrics, University of Virginia, Charlottesville, VA
| | - Laura Isbell
- College of Arts and Sciences, University of Virginia, Charlottesville, VA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA.,University of Virginia Brain Institute, University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA
| |
Collapse
|
5
|
Sheldon RA, Windsor C, Ferriero DM. Strain-Related Differences in Mouse Neonatal Hypoxia-Ischemia. Dev Neurosci 2019; 40:490-496. [PMID: 30820007 DOI: 10.1159/000495880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 01/16/2023] Open
Abstract
Neonatal hypoxic-ischemic brain injury is commonly studied by means of the Vannucci procedure in mice or rats (unilateral common carotid artery occlusion followed by hypoxia). Previously, we modified the postnatal day 7 (P7) rat procedure for use in mice, and later demonstrated that genetic strain strongly influences the degree of brain injury in the P7 mouse model of hypoxia-ischemia (HI). Recently, the P9 or P10 mouse brain was recognized as the developmental equivalent of a term neonatal human brain, rather than P7. Consequently, the Vannucci procedure has again been modified, and a commonly used protocol employs 10% oxygen for 50 min in C57Bl/6 mice. Strain differences have yet to be described for the P9/P10 mouse model. In order to determine if the strain differences we previously reported in the P7 mouse model are present in the P9 model, we compared 2 commonly used strains, CD1 and C57Bl/6J, in both the P7 (carotid ligation [in this case, right] followed by exposure to 8% oxygen for 30 min) and P9 (carotid ligation [in this case left] followed by exposure to 10% oxygen) models of HI. Experiments using the P7 model were performed in 2001-2012 and those using the P9 model were performed in 2012-2016. Five to seven days after the HI procedure, mice were perfused with 4% paraformaldehyde, their brains were sectioned on a Vibratome (50 µm) and alternate sections were stained with Perl's iron stain or cresyl violet. Brain sections were examined microscopically and scored for the degree of injury. Since brains in the P7 group had been scored previously with a slightly different system, they were reanalyzed using our current scoring system which scores injury in 11 regions: the anterior, middle, and posterior cortex; the anterior, middle, and posterior striatum; CA1, CA2, CA3, and the dentate gyrus of the hippocampus and thalamus, on a scale from 0 (none) to 3 (cystic infarct) for a total score of 0-33. Brains in the P9 group were scored with the same system. Given the same insult, the P7 CD1 mice had greater injury than the C57Bl/6J mice, which agrees with our previous findings. The P9 CD1 mice also had greater injury than the C57Bl/6J mice. This study confirms that CD1 mice are more susceptible to injury than C57Bl/6J mice and that strain selection is important when using mouse models of HI.
Collapse
Affiliation(s)
- R Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA, .,Department of Newborn Brain Research Institute, University of California San Francisco, San Francisco, California, USA,
| | - Christine Windsor
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA.,Department of Newborn Brain Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Donna M Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA.,Department of Neurology, University of California San Francisco, San Francisco, California, USA.,Department of Newborn Brain Research Institute, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
6
|
Nemeth CL, Drummond GT, Mishra MK, Zhang F, Carr P, Garcia MS, Doman S, Fatemi A, Johnston MV, Kannan RM, Kannan S, Wilson MA. Uptake of dendrimer-drug by different cell types in the hippocampus after hypoxic-ischemic insult in neonatal mice: Effects of injury, microglial activation and hypothermia. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2359-2369. [PMID: 28669854 DOI: 10.1016/j.nano.2017.06.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/15/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022]
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) can result in neurodevelopmental disability, including cerebral palsy. The only treatment, hypothermia, provides incomplete neuroprotection. Hydroxyl polyamidoamine (PAMAM) dendrimers are being explored for targeted delivery of therapy for HIE. Understanding the biodistribution of dendrimer-conjugated drugs into microglia, neurons and astrocytes after brain injury is essential for optimizing drug delivery. We conjugated N-acetyl-L-cysteine to Cy5-labeled PAMAM dendrimer (Cy5-D-NAC) and used a mouse model of perinatal HIE to study effects of timing of administration, hypothermia, brain injury, and microglial activation on uptake. Dendrimer conjugation delivered therapy most effectively to activated microglia but also targeted some astrocytes and injured neurons. Cy5-D-NAC uptake was correlated with brain injury in all cell types and with activated morphology in microglia. Uptake was not inhibited by hypothermia, except in CD68+ microglia. Thus, dendrimer-conjugated drug delivery can target microglia, astrocytes and neurons and can be used in combination with hypothermia for treatment of HIE.
Collapse
Affiliation(s)
- Christina L Nemeth
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N Broadway, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA
| | - Gabrielle T Drummond
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N Broadway, Baltimore, MD 21205, USA
| | - Manoj K Mishra
- Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21287, USA
| | - Fan Zhang
- Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21287, USA
| | - Patrice Carr
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N Broadway, Baltimore, MD 21205, USA
| | - Maxine S Garcia
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N Broadway, Baltimore, MD 21205, USA
| | - Sydney Doman
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N Broadway, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N Broadway, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA
| | - Michael V Johnston
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N Broadway, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA
| | - Rangaramanujam M Kannan
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N Broadway, Baltimore, MD 21205, USA; Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21287, USA
| | - Sujatha Kannan
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N Broadway, Baltimore, MD 21205, USA; Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, The Charlotte R. Bloomberg Children's Center, 1800 Orleans Street, Suite 6318D, Baltimore, MD 21287, USA.
| | - Mary Ann Wilson
- Hugo W. Moser Research Institute at Kennedy Krieger, 707 N Broadway, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Martin JE, McKeegan DEF, Sparrey J, Sandilands V. Evaluation of the potential killing performance of novel percussive and cervical dislocation tools in chicken cadavers. Br Poult Sci 2017; 58:216-223. [PMID: 28084791 DOI: 10.1080/00071668.2017.1280724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. Four mechanical poultry killing devices; modified Armadillo (MARM), modified Rabbit Zinger (MZIN), modified pliers (MPLI) and a novel mechanical cervical dislocation (NMCD) gloved device, were assessed for their killing potential in the cadavers of euthanised birds. 2. A 4 × 4 × 4 factorial design (batch × device × bird type + age) was employed. Ten bird cadavers per bird type and age were tested with each of the 4 devices (N = 160 birds). All cadavers were examined post-mortem to establish the anatomical damage caused. 3. NMCD, MARM and MZIN demonstrated killing potential, as well as consistency in their anatomical effects. NMCD had the highest killing potential, with 100% of birds sustaining the required physical trauma to have caused rapid death. 4. The MPLI was inconsistent, and only performed optimally for 27.5% of birds. Severe crushing injury was seen in >50% of MPLI birds, suggesting that birds would die of asphyxia rather than cerebral ischaemia, a major welfare concern. As a result, the MPLI are not recommended as a humane on-farm killing device for chickens. 5. This experiment provides important data on the killing potential of untried novel percussive and mechanical cervical dislocation methods, informing future studies.
Collapse
Affiliation(s)
- J E Martin
- a Animal Behaviour and Welfare , SRUC, Roslin Institute Building , Easter Bush, Edinburgh , UK.,b Royal (Dick) School of Veterinary Studies and Roslin Institute , University of Edinburgh , Easter Bush, Edinburgh , UK.,c Institute of Biodiversity , University of Glasgow , Glasgow , UK
| | - D E F McKeegan
- c Institute of Biodiversity , University of Glasgow , Glasgow , UK
| | - J Sparrey
- d Livetec Systems Ltd , Silsoe , Bedford , UK
| | - V Sandilands
- a Animal Behaviour and Welfare , SRUC, Roslin Institute Building , Easter Bush, Edinburgh , UK
| |
Collapse
|
8
|
Different response to antiepileptic drugs according to the type of epileptic events in a neonatal ischemia-reperfusion model. Neurobiol Dis 2016; 99:145-153. [PMID: 28042096 DOI: 10.1016/j.nbd.2016.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/16/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Perinatal arterial stroke is the most frequent form of cerebral infarction in children. Neonatal seizures are the most frequent symptom during the neonatal period. The current management of perinatal stroke is based on supportive care. It is currently unknown if treatment of the seizures modifies the outcome, and no clinical studies have focused on seizures during neonatal stroke. We studied the effect of phenobarbital and levetiracetam on an ischemic-reperfusion stroke model in P7 rats using prolonged electroencephalographic recordings and a histologic analysis of the brain (24h after injury). The following two types of epileptic events were observed: 1) bursts of high amplitude spikes during ischemia and the first hours of reperfusion and 2) organized seizures consisting in discharges of a 1-2Hz spike-and-wave. Both phenobarbital and levetiracetam decreased the total duration of the bursts of high amplitude spikes. Phenobarbital also delayed the start of seizures without changing the total duration of epileptic discharges. The markedly limited efficacy of the antiepileptic drugs studied in our neonatal stroke rat model is frequently observed in human neonatal seizures. Both drugs did not modify the stroke volume, which suggests that the modification of the quantity of bursts of high amplitude spikes does not influence the infarct size. In the absence of a reduction in seizure burden by the antiepileptic drugs, we increased the seizure burden and stroke volume by combining our neonatal stroke model with a lithium-pilocarpine-induced status epilepticus. Our data suggest that the reduction of burst of spikes did not influence the stroke volume. The presence of organized seizure with a pattern close to what is observed in human newborns seems related to the presence of the infarct. Further research is required to determine the relationship between seizure burden and infarct volume.
Collapse
|
9
|
Andrade A, Bigi S, Laughlin S, Parthasarathy S, Sinclair A, Dirks P, Pontigon AM, Moharir M, Askalan R, MacGregor D, deVeber G. Association Between Prolonged Seizures and Malignant Middle Cerebral Artery Infarction in Children With Acute Ischemic Stroke. Pediatr Neurol 2016; 64:44-51. [PMID: 27663488 DOI: 10.1016/j.pediatrneurol.2016.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Malignant middle cerebral artery infarct syndrome is a potentially fatal complication of stroke that is poorly understood in children. We studied the frequency, associated characteristics, and outcomes of this condition in children. METHODS Children, aged two months to 18 years with acute middle cerebral artery infarct diagnosed at our center between January 2005 and December 2012 were studied. Associations with malignant middle cerebral artery infarct syndrome were sought, including age, seizures, neurological deficit severity (Pediatric National Institute of Health Stroke Severity Score), stroke etiology, fever, blood pressure, blood glucose, infarct location, infarct volume (modified pediatric Alberta Stroke Program Early Computed Tomography Score), and arterial occlusion. Death and neurological outcomes were determined. RESULTS Among 66 children with middle cerebral artery stroke, 12 (18%) developed malignant middle cerebral artery infarct syndrome, fatal in three. Prolonged seizures during the first 24 hours (odds ratio, 25.51; 95% confidence interval, 3.10 to 334.81; P = 0.005) and a higher Pediatric National Institute of Health Stroke Severity Score (odds ratio, 1.22; 95% confidence interval, 1.08 to 1.45; P = 0.006) were independently associated with malignant middle cerebral artery infarct syndrome. All children aged greater than two years with a Pediatric National Institute of Health Stroke Severity Score ≥8 and initial seizures ≥5 minutes duration developed malignant middle cerebral artery infarct syndrome (100%). CONCLUSIONS Malignant middle cerebral artery infarct syndrome affects nearly one in five children with acute middle cerebral artery stroke. Children with higher Pediatric National Institute of Health Stroke Severity Scores and prolonged initial seizures are at greatly increased risk for malignant middle cerebral artery infarct syndrome. Children with middle cerebral artery infarcts warrant intensive neuroprotective management and close monitoring to enable early referral for hemicraniectomy surgery.
Collapse
Affiliation(s)
- Andrea Andrade
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada.
| | - Sandra Bigi
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Suzanne Laughlin
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada; Division of Neuroradiology, Department of Medical Imaging, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Sujatha Parthasarathy
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Adriane Sinclair
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Peter Dirks
- Division of Neurosurgery, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Ann Marie Pontigon
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Mahendranath Moharir
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Rand Askalan
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Daune MacGregor
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Gabrielle deVeber
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada; Child Health Evaluative Sciences Program, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Fox CK, Glass HC, Sidney S, Smith SE, Fullerton HJ. Neonatal seizures triple the risk of a remote seizure after perinatal ischemic stroke. Neurology 2016; 86:2179-86. [PMID: 27164703 DOI: 10.1212/wnl.0000000000002739] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/01/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To determine incidence rates and risk factors of remote seizure after perinatal arterial ischemic stroke. METHODS We retrospectively identified a population-based cohort of children with perinatal arterial ischemic stroke (presenting acutely or in a delayed fashion) from a large Northern Californian integrated health care system. We determined incidence and predictors of a remote seizure (unprovoked seizure after neonatal period, defined as 28 days of life) by survival analyses, and measured epilepsy severity in those with active epilepsy (≥1 remote seizure and maintenance anticonvulsant treatment) at last follow-up. RESULTS Among 87 children with perinatal stroke, 40 (46%) had a seizure in the neonatal period. During a median follow-up of 7.1 years (interquartile range 3.2-10.5), 37 children had ≥1 remote seizure. Remote seizure risk was highest during the first year of life, with a 20% (95% confidence interval [CI] 13%-30%) cumulative incidence by 1 year of age, 46% (CI 35%-58%) by 5 years, and 54% (CI 41%-67%) by 10 years. Neonatal seizures increased the risk of a remote seizure (hazard ratio 2.8, CI 1.3-5.8). Children with neonatal seizures had a 69% (CI 48%-87%) cumulative incidence of remote seizure by age 10 years. Among the 24 children with active epilepsy at last follow-up, 8 (33%) were having monthly seizures despite an anticonvulsant and 7 (29%) were on more than one anticonvulsant. CONCLUSIONS Remote seizures and epilepsy, including medically refractory epilepsy, are common after perinatal stroke. Neonatal seizures are associated with nearly 3-fold increased remote seizure risk.
Collapse
Affiliation(s)
- Christine K Fox
- From the Departments of Neurology (C.K.F., H.C.G., H.J.F.), Pediatrics (C.K.F., H.C.G., H.J.F.), and Epidemiology and Biostatistics (H.C.G.), University of California, San Francisco; the Division of Research (S.S.), Kaiser Permanente Northern California, Oakland; and the Division of Pediatric Neurology (S.E.S.), Kaiser Permanente Oakland Medical Center, CA.
| | - Hannah C Glass
- From the Departments of Neurology (C.K.F., H.C.G., H.J.F.), Pediatrics (C.K.F., H.C.G., H.J.F.), and Epidemiology and Biostatistics (H.C.G.), University of California, San Francisco; the Division of Research (S.S.), Kaiser Permanente Northern California, Oakland; and the Division of Pediatric Neurology (S.E.S.), Kaiser Permanente Oakland Medical Center, CA
| | - Stephen Sidney
- From the Departments of Neurology (C.K.F., H.C.G., H.J.F.), Pediatrics (C.K.F., H.C.G., H.J.F.), and Epidemiology and Biostatistics (H.C.G.), University of California, San Francisco; the Division of Research (S.S.), Kaiser Permanente Northern California, Oakland; and the Division of Pediatric Neurology (S.E.S.), Kaiser Permanente Oakland Medical Center, CA
| | - Sabrina E Smith
- From the Departments of Neurology (C.K.F., H.C.G., H.J.F.), Pediatrics (C.K.F., H.C.G., H.J.F.), and Epidemiology and Biostatistics (H.C.G.), University of California, San Francisco; the Division of Research (S.S.), Kaiser Permanente Northern California, Oakland; and the Division of Pediatric Neurology (S.E.S.), Kaiser Permanente Oakland Medical Center, CA
| | - Heather J Fullerton
- From the Departments of Neurology (C.K.F., H.C.G., H.J.F.), Pediatrics (C.K.F., H.C.G., H.J.F.), and Epidemiology and Biostatistics (H.C.G.), University of California, San Francisco; the Division of Research (S.S.), Kaiser Permanente Northern California, Oakland; and the Division of Pediatric Neurology (S.E.S.), Kaiser Permanente Oakland Medical Center, CA
| |
Collapse
|
11
|
Progesterone in the treatment of neonatal arterial ischemic stroke and acute seizures: Role of BDNF/TrkB signaling. Neuropharmacology 2016; 107:317-328. [PMID: 27039043 DOI: 10.1016/j.neuropharm.2016.03.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023]
Abstract
Neonatal stroke is among the top ten causes of childhood death and permanent disability in survivors, but no safe and effective acute treatments exist. To advance understanding of its neuroprotective mechanisms, we examined the effects of progesterone (PROG) on local and systemic inflammation (IL-1β, IL-6, TNFα), brain derived neurotrophic factor/Tropomyosin receptor kinase B (BDNF/TrkB) signaling, vascular damage (vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9)), acute behavioral seizures and brain infarction size following neonatal arterial ischemic stroke in mice. CD1 mouse pups (postnatal day 12, mixed gender) received permanent unilateral right common carotid ligation (pUCCL) or sham surgery. Pups showing seizure activity during the first hour post-pUCCL were randomly assigned to receive PROG (8 mg/kg) or vehicle injections. PROG treatment significantly (p < 0.05) reduced seizure occurrence by ∼44% compared to vehicle and attenuated the expression of pro-inflammatory cytokines in serum and brain at different time-points. PROG differentially regulated the expression of BDNF and TrkB and the activity of VEGF and MMP-9 over the 7d period. Permanent UCCL resulted in severe hemispheric damage measured at 7 days post-pUCCL but PROG treatment produced a significant (p < 0.05) reduction in infarct volume (∼70%) compared to vehicle. A gender-based comparison of data revealed significantly greater seizure activity in males compared to females. However, we did not observe significant sex differences on any other markers of the injury at this early stage of development. PROG treatment is neuroprotective through a number of signaling pathways and can be beneficial in treating neonatal arterial ischemic stroke in CD1 mice.
Collapse
|
12
|
Zaccagnini G, Palmisano A, Canu T, Maimone B, Lo Russo FM, Ambrogi F, Gaetano C, De Cobelli F, Del Maschio A, Esposito A, Martelli F. Magnetic Resonance Imaging Allows the Evaluation of Tissue Damage and Regeneration in a Mouse Model of Critical Limb Ischemia. PLoS One 2015; 10:e0142111. [PMID: 26554362 PMCID: PMC4640853 DOI: 10.1371/journal.pone.0142111] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.
Collapse
Affiliation(s)
- Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Anna Palmisano
- Preclinical Imaging Facility, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Tamara Canu
- Preclinical Imaging Facility, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Biagina Maimone
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Francesco M. Lo Russo
- Preclinical Imaging Facility, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Internal Medicine Clinic III, Goethe University, Frankfurt am Main, Germany
| | - Francesco De Cobelli
- Preclinical Imaging Facility, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Del Maschio
- Preclinical Imaging Facility, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Esposito
- Preclinical Imaging Facility, Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- * E-mail: (AE); (FM)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
- * E-mail: (AE); (FM)
| |
Collapse
|
13
|
Rocha-Ferreira E, Phillips E, Francesch-Domenech E, Thei L, Peebles DM, Raivich G, Hristova M. The role of different strain backgrounds in bacterial endotoxin-mediated sensitization to neonatal hypoxic-ischemic brain damage. Neuroscience 2015; 311:292-307. [PMID: 26515746 PMCID: PMC4675086 DOI: 10.1016/j.neuroscience.2015.10.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022]
Abstract
Strain background plays a role in the response to hypoxia–ischemia. LPS sensitizes the immature brain to hypoxia–ischemia across several mouse strains. Vehicle injection may induce immune response and sensitization to hypoxia–ischemia.
Genetic background is known to influence the outcome in mouse models of human disease, and previous experimental studies have shown strain variability in the neonatal mouse model of hypoxia–ischemia. To further map out this variability, we compared five commonly used mouse strains: C57BL/6, 129SVJ, BALB/c, CD1 and FVB in a pure hypoxic–ischemic setup and following pre-sensitization with lipopolysaccharide (LPS). Postnatal day 7 pups were subjected to unilateral carotid artery occlusion followed by continuous 30 min 8% oxygen exposure at 36 °C. Twelve hours prior, a third of the pups received a single intraperitoneal LPS (0.6 μg/g) or a saline (vehicle) administration, respectively; a further third underwent hypoxia–ischemia alone without preceding injection. Both C57BL/6 and 129SVJ strains showed minimal response to 30 min hypoxia–ischemia alone, BALB/c demonstrated a moderate response, and both CD1 and FVB revealed the highest brain damage. LPS pre-sensitization led to substantial increase in overall brain infarction, microglial and astrocyte response and cell death in four of the five strains, with exception of BALB/c that only showed a significant effect with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Saline administration prior to hypoxia–ischemia resulted in an increase in inflammatory-associated markers, particularly in the astroglial activation of C57BL/6 mice, and in combined microglial activation and neuronal cell loss in FVB mice. Finally, two of the four strongly affected strains – C57BL/6 and CD1 – revealed pronounced contralateral astrogliosis with a neuroanatomical localization similar to that observed on the occluded hemisphere. Overall, the current findings demonstrate strain differences in response to hypoxia–ischemia alone, to stress associated with vehicle injection, and to LPS-mediated pre-sensitization, which partially explains the high variability seen in the neonatal mouse models of hypoxia–ischemia. These results can be useful in future studies of fetal/neonatal response to inflammation and reduced oxygen–blood supply.
Collapse
Affiliation(s)
- E Rocha-Ferreira
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK.
| | - E Phillips
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - E Francesch-Domenech
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - L Thei
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - D M Peebles
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - G Raivich
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| | - M Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK
| |
Collapse
|
14
|
Clowry GJ, Basuodan R, Chan F. What are the Best Animal Models for Testing Early Intervention in Cerebral Palsy? Front Neurol 2014; 5:258. [PMID: 25538677 PMCID: PMC4255621 DOI: 10.3389/fneur.2014.00258] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/21/2014] [Indexed: 11/13/2022] Open
Abstract
Interventions to treat cerebral palsy should be initiated as soon as possible in order to restore the nervous system to the correct developmental trajectory. One drawback to this approach is that interventions have to undergo exceptionally rigorous assessment for both safety and efficacy prior to use in infants. Part of this process should involve research using animals but how good are our animal models? Part of the problem is that cerebral palsy is an umbrella term that covers a number of conditions. There are also many causal pathways to cerebral palsy, such as periventricular white matter injury in premature babies, perinatal infarcts of the middle cerebral artery, or generalized anoxia at the time of birth, indeed multiple causes, including intra-uterine infection or a genetic predisposition to infarction, may need to interact to produce a clinically significant injury. In this review, we consider which animal models best reproduce certain aspects of the condition, and the extent to which the multifactorial nature of cerebral palsy has been modeled. The degree to which the corticospinal system of various animal models human corticospinal system function and development is also explored. Where attempts have already been made to test early intervention in animal models, the outcomes are evaluated in light of the suitability of the model.
Collapse
Affiliation(s)
- Gavin John Clowry
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| | - Reem Basuodan
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| | - Felix Chan
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
15
|
Sampath D, White AM, Raol YH. Characterization of neonatal seizures in an animal model of hypoxic-ischemic encephalopathy. Epilepsia 2014; 55:985-93. [PMID: 24836645 DOI: 10.1111/epi.12646] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In this study, we use time-locked video and electroencephalography (EEG) recordings to characterize acute seizures and EEG abnormalities in an animal model that replicates many salient features of human neonatal hypoxic-ischemic encephalopathy (HIE) including the brain injury pattern and long-term neurologic outcome. METHODS Hypoxia-ischemia (HI) was induced in 7-day-old rats by ligating the right carotid artery and exposing the pups to hypoxia for 2 h (Rice-Vannucci method). To identify seizures and abnormal EEG activity, pups were monitored by video-EEG during hypoxia and at various time points after HI. Occurrence of electroclinical seizures, purely electrographic seizures and other abnormal discharges on EEG, was quantified manually. A power spectrum analysis was done to evaluate the effects of HI on EEG spectra in the 1-50 Hz frequency band. RESULTS During hypoxia, all pups exhibit short duration, but frequent electroclinical seizures. Almost all pups continue to have seizures in the immediate period following termination of hypoxia. In more than half of the HI rats, seizures persisted for 24 h; for some of them, the seizures continued for >48 h. Seizures were not observed in any rats at 72 h after HI induction. A significant reduction in background EEG voltage in the cortex ipsilateral to the ligated carotid artery occurred in rats subjected to HI. In addition, purely electrographic seizures, spikes, sharp waves, and brief runs of epileptiform discharges (BREDs) were also observed in these rats. SIGNIFICANCE HI induction in P7 rats using the Rice-Vannucci method resulted in the development of seizures and EEG abnormalities similar to that seen in human neonates with HIE. Therefore, we conclude that this is a valid model to test the efficacy of novel interventions to treat neonatal seizures.
Collapse
Affiliation(s)
- Dayalan Sampath
- Department of Pediatrics, Division of Neurology, School of Medicine, Translational Epilepsy Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, U.S.A
| | | | | |
Collapse
|
16
|
Pluripotent possibilities: human umbilical cord blood cell treatment after neonatal brain injury. Pediatr Neurol 2013; 48:346-54. [PMID: 23583051 DOI: 10.1016/j.pediatrneurol.2012.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/29/2012] [Indexed: 12/14/2022]
Abstract
Perinatal hypoxic-ischemic brain injury and stroke in the developing brain remain important causes of chronic neurologic morbidity. Emerging data suggest that transplantation of umbilical cord blood-derived stem cells may have therapeutic potential for neuroregeneration and improved functional outcome. The pluripotent capacity of stem cells from the human umbilical cord blood provides simultaneous targeting of multiple neuropathologic events initiated by a hypoxic-ischemic insult. Their high regenerative potential and naïve immunologic phenotype makes them a preferable choice for transplantation. A multiplicity of transplantation protocols have been studied with a variety of brain injury models; however, only a few have been conducted on immature animals. Biological recipient characteristics, such as age and sex, appear to differentially modulate responses of the animals to the transplanted cord blood stem cells. Survival, migration, and function of the transplanted cells have also been studied and reveal insights into the mechanisms of cord blood stem cell effects. Data from preclinical studies have informed current clinical safety trials of human cord blood in neonates, and further work is needed to continue progress in this field.
Collapse
|
17
|
In vivo magnetization transfer MRI shows dysmyelination in an ischemic mouse model of periventricular leukomalacia. J Cereb Blood Flow Metab 2011; 31:2009-18. [PMID: 21540870 PMCID: PMC3208153 DOI: 10.1038/jcbfm.2011.68] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Periventricular leukomalacia, PVL, is the leading cause of cerebral palsy in prematurely born infants, and therefore more effective interventions are required. The objective of this study was to develop an ischemic injury model of PVL in mice and to determine the feasibility of in vivo magnetization transfer (MT) magnetic resonance imaging (MRI) as a potential monitoring tool for the evaluation of disease severity and experimental therapeutics. Neonatal CD-1 mice underwent unilateral carotid artery ligation on postnatal day 5 (P5); at P60, in vivo T2-weighted (T2w) and MT-MRI were performed and correlated with postmortem histopathology. In vivo T2w MRI showed thinning of the right corpus callosum, but no significant changes in hippocampal and hemispheric volumes. Magnetization transfer MRI revealed significant white matter abnormalities in the bilateral corpus callosum and internal capsule. These quantitative MT-MRI changes correlated highly with postmortem findings of reduced myelin basic protein in bilateral white matter tracts. Ventriculomegaly and persistent astrogliosis were observed on the ligated side, along with evidence of axonopathy and fewer oligodendrocytes in the corpus callosum. We present an ischemia-induced mouse model of PVL, which has pathologic abnormalities resembling autopsy reports in infants with PVL. We further validate in vivo MRI techniques as quantitative monitoring tools that highly correlate with postmortem histopathology.
Collapse
|
18
|
Young CN, Davisson RL. In vivo assessment of neurocardiovascular regulation in the mouse: principles, progress, and prospects. Am J Physiol Heart Circ Physiol 2011; 301:H654-62. [PMID: 21705676 DOI: 10.1152/ajpheart.00355.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A growing body of evidence indicates that a number of common complex diseases, including hypertension, heart failure, and obesity, are characterized by alterations in central neurocardiovascular regulation. However, our understanding of how changes within the central nervous system contribute to the development and progression of these and other diseases remains unclear. As with many areas of cardiovascular research, the mouse has emerged as a key species for investigations of neuroregulatory processes because of its amenability to highly specific genetic manipulations. In parallel with the development of increasingly sophisticated murine models has come the miniaturization and advancement in methodologies for in vivo assessment of neurocardiovascular end points in the mouse. The following brief review will focus on a number of key direct and indirect experimental approaches currently in use, including measurement of arterial blood pressure, assessment of cardiovascular autonomic control, and evaluation of arterial baroreflex function. The advantages and limitations of each methodology are highlighted to allow for a critical evaluation by the reader when considering these approaches.
Collapse
Affiliation(s)
- Colin N Young
- Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853-6401, USA.
| | | |
Collapse
|