1
|
Neonatal complete Freund's adjuvant-induced inflammation does not induce or alter hyperalgesic priming or alter adult distributions of C-fibre dorsal horn innervation. Pain Rep 2020; 5:e872. [PMID: 33274305 PMCID: PMC7704330 DOI: 10.1097/pr9.0000000000000872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction: Inflammation during the neonatal period can exacerbate pain severity following reinjury in adulthood. This is driven by alterations in the postnatal development of spinal and supraspinal nociceptive circuitry. However, the contribution of alterations in peripheral nociceptor function remains underexplored. Objectives: We examined whether neonatal complete Freund's adjuvant (CFA)-induced inflammation induced or altered adult development of hyperalgesic priming (inflammation-induced plasticity in nonpeptidergic C fibres) or altered postnatal reorganization of calcitonin gene-related peptide (CGRP)-expressing and isolectin B4 (IB4)-binding C fibres in the spinal dorsal horn (DH). Methods: After intraplantar injection of CFA at postnatal day (P) 1, we assessed mechanical thresholds in adult (P60) rats before and after intraplantar carrageenan. One week later, intraplantar PGE2-induced hypersensitivity persisting for 4 hours was deemed indicative of hyperalgesic priming. CGRP expression and IB4 binding were examined in adult rat DH after CFA. Results: P1 CFA did not alter baseline adult mechanical thresholds, nor did it change the extent or duration of carrageenan-induced hypersensitivity. However, this was slower to resolve in female than in male rats. Rats that previously received carrageenan but not saline were primed, but P1 hind paw CFA did not induce or alter hyperalgesic priming responses to PGE2. In addition, CFA on P1 or P10 did not alter intensity or patterns of CGRP or IB4 staining in the adult DH. Conclusion: Complete Freund's adjuvant-induced inflammation during a critical period of vulnerability to injury during early postnatal development does not induce or exacerbate hyperalgesic priming or alter the broad distribution of CGRP-expressing or IB4-binding afferent terminals in the adult dorsal horn.
Collapse
|
2
|
Williams MD, Lascelles BDX. Early Neonatal Pain-A Review of Clinical and Experimental Implications on Painful Conditions Later in Life. Front Pediatr 2020; 8:30. [PMID: 32117835 PMCID: PMC7020755 DOI: 10.3389/fped.2020.00030] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Modern health care has brought our society innumerable benefits but has also introduced the experience of pain very early in life. For example, it is now routine care for newborns to receive various injections or have blood drawn within 24 h of life. For infants who are sick or premature, the pain experiences inherent in the required medical care are frequent and often severe, with neonates requiring intensive care admission encountering approximately fourteen painful procedures daily in the hospital. Given that much of the world has seen a steady increase in preterm births for the last several decades, an ever-growing number of babies experience multiple painful events before even leaving the hospital. These noxious events occur during a critical period of neurodevelopment when the nervous system is very vulnerable due to immaturity and neuroplasticity. Here, we provide a narrative review of the literature pertaining to the idea that early life pain has significant long-term effects on neurosensory, cognition, behavior, pain processing, and health outcomes that persist into childhood and even adulthood. We refer to clinical and pre-clinical studies investigating how early life pain impacts acute pain later in life, focusing on animal model correlates that have been used to better understand this relationship. Current knowledge around the proposed underlying mechanisms responsible for the long-lasting consequences of neonatal pain, its neurobiological and behavioral effects, and its influence on later pain states are discussed. We conclude by highlighting that another important consequence of early life pain may be the impact it has on later chronic pain states-an area of research that has received little attention.
Collapse
Affiliation(s)
- Morika D. Williams
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - B. Duncan X. Lascelles
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Translational Research in Pain Program, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Translational Pain Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
3
|
McLennan KM, Miller AL, Dalla Costa E, Stucke D, Corke MJ, Broom DM, Leach MC. Conceptual and methodological issues relating to pain assessment in mammals: The development and utilisation of pain facial expression scales. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Burke NN, Fan CY, Trang T. Microglia in health and pain: impact of noxious early life events. Exp Physiol 2018; 101:1003-21. [PMID: 27474262 DOI: 10.1113/ep085714] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/27/2016] [Indexed: 01/08/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses the origins and development of microglia, and how stress, pain or inflammation in early life disturbs microglial function during critical developmental periods, leading to altered pain sensitivity and/or increased risk of chronic pain in later life. What advances does it highlight? We highlight recent advances in understanding how disrupted microglial function impacts the developing nervous system and the consequences for pain processing and susceptibility for development of chronic pain in later life. The discovery of microglia is accredited to Pío del Río-Hortega, who recognized this 'third element' of CNS cells as being morphologically distinct from neurons and astrocytes. For decades after this finding, microglia were altogether ignored or relegated as simply being support cells. Emerging from virtual obscurity, microglia have now gained notoriety as immune cells that assume a leading role in the development, maintenance and protection of a healthy CNS. Pioneering studies have recently shed light on the origins of microglia, their role in the developing nervous system and the complex roles they play beyond the immune response. These studies reveal that altered microglial function can have a profoundly negative impact on the developing brain and may be a determinant in a range of neurodevelopmental disorders and neurodegenerative diseases. The realization that aberrant microglial function also critically underlies chronic pain, a debilitating disorder that afflicts over 1.5 billion people worldwide, was a major conceptual leap forward in the pain field. Adding to this advance is emerging evidence that early life noxious experiences can have a long-lasting impact on central pain processing and adult pain sensitivity. With microglia now coming of age, in this review we examine the association between adverse early life events, such as stress, injury or inflammation, and the influence of sex differences, on the role of microglia in pain physiology in adulthood.
Collapse
Affiliation(s)
- Nikita N Burke
- Department of Comparative Biology and Experimental Medicine, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Churmy Y Fan
- Department of Comparative Biology and Experimental Medicine, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tuan Trang
- Department of Comparative Biology and Experimental Medicine, Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Butkevich IP, Mikhailenko VA, Lavrova YA, Ulanova NA. Repeated Inflammation-Related Pain Syndrome in Neonatal Male Rats Alters Adaptive Behavior during the Adolescent Period of Development. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2016; 46:461-466. [DOI: 10.1007/s11055-016-0258-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Walker SM, Beggs S, Baccei ML. Persistent changes in peripheral and spinal nociceptive processing after early tissue injury. Exp Neurol 2015; 275 Pt 2:253-60. [PMID: 26103453 DOI: 10.1016/j.expneurol.2015.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
It has become clear that tissue damage during a critical period of early life can result in long-term changes in pain sensitivity, but the underlying mechanisms remain to be fully elucidated. Here we review the clinical and preclinical evidence for persistent alterations in nociceptive processing following neonatal tissue injury, which collectively point to the existence of both a widespread hypoalgesia at baseline as well as an exacerbated degree of hyperalgesia following a subsequent insult to the same somatotopic region. We also highlight recent work investigating the effects of early trauma on the organization and function of ascending pain pathways at a cellular and molecular level. These effects of neonatal injury include altered ion channel expression in both primary afferent and spinal cord neurons, shifts in the balance between synaptic excitation and inhibition within the superficial dorsal horn (SDH) network, and a 'priming' of microglial responses in the adult SDH. A better understanding of how early tissue damage influences the maturation of nociceptive circuits could yield new insight into strategies to minimize the long-term consequences of essential, but invasive, medical procedures on the developing somatosensory system.
Collapse
Affiliation(s)
- Suellen M Walker
- Pain Research (Respiratory Critical Care and Anaesthesia), UCL Institute of Child Health, Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Simon Beggs
- Program in Neurosciences and Mental Health, The Hospital for Sick Children and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Mark L Baccei
- Pain Research Center, Dept. of Anesthesiology, University of Cincinnati, Cincinnati, OH USA.
| |
Collapse
|
7
|
The pivotal role played by lipocalin-2 in chronic inflammatory pain. Exp Neurol 2014; 254:41-53. [PMID: 24440229 DOI: 10.1016/j.expneurol.2014.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/13/2013] [Accepted: 01/07/2014] [Indexed: 12/30/2022]
|
8
|
Li M, Chen H, Tang J, Chen J. Neonatal bee venom exposure induces sensory modality-specific enhancement of nociceptive response in adult rats. PAIN MEDICINE 2013; 15:986-97. [PMID: 24308777 DOI: 10.1111/pme.12296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Previous studies have shown that inflammatory pain at the neonatal stage can produce long-term structural and functional changes in nociceptive pathways, resulting in altered pain perception in adulthood. However, the exact pattern of altered nociceptive response and associated neurochemical changes in the spinal cord in this process is unclear. METHOD In this study, we used an experimental paradigm in which each rat first received intraplantar bee venom (BV) or saline injection on postnatal day 1, 4, 7, 14, 21, or 28. This was followed 2 months later by a second intraplantar bee venom injection in the same rats to examine the difference in nociceptive responses. RESULTS We found that neonatal inflammatory pain induced by the first BV injection significantly reduced baseline paw withdrawal mechanical threshold, but not baseline paw withdrawal thermal latency, when rats were examined 2 months from the first BV injection. Neonatal inflammatory pain also exacerbated mechanical, but not thermal, hyperalgesia in response to the second BV injection in these same rats. Rats exposed to neonatal inflammation also showed up-regulation of spinal NGF, TrkA receptor, BDNF, TrkB receptor, IL-1β, and COX-2 expression following the second BV injection, especially with prior BV exposure on postnatal day 21 or 28. CONCLUSION These results indicate that neonatal inflammation produces sensory modality-specific changes in nociceptive behavior and alters neurochemistry in the spinal cord of adult rats. These results also suggest that a prior history of inflammatory pain during the developmental period might have an impact on clinical pain in highly susceptible adult patients.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Anesthesiology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | | | | | | |
Collapse
|
9
|
Abstract
Nociceptive pathways are functional following birth. In addition to physiological and behavioral responses, neurophysiological measures and neuroimaging evaluate nociceptive pathway function and quantify responses to noxious stimuli in preterm and term neonates. Intensive care and surgery can expose neonates to painful stimuli when the developing nervous system is sensitive to changing input, resulting in persistent impacts into later childhood. Early pain experience has been correlated with increased sensitivity to subsequent painful stimuli, impaired neurodevelopmental outcomes, and structural changes in brain development. Parallel preclinical studies have elucidated underlying mechanisms and evaluate preventive strategies to inform future clinical trials.
Collapse
Affiliation(s)
- Suellen M Walker
- Portex Unit: Pain Research, UCL Institute of Child Health, Great Ormond St Hospital for Children NHS Foundation Trust, 30 Guilford Street, London, UK.
| |
Collapse
|
10
|
Page GG, Hayat MJ, Kozachik SL. Sex differences in pain responses at maturity following neonatal repeated minor pain exposure in rats. Biol Res Nurs 2013; 15:96-104. [PMID: 21900309 DOI: 10.1177/1099800411419493] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
There is mounting evidence of long-lasting changes in pain sensitivity in school-age children who were cared for in a neonatal intensive care unit. Such care involves multiple pain exposures, 70% of which are accounted for by heel lance to monitor physiological well-being. The authors sought to model the repeated brief pain resulting from heel lance by administering repeated paw needle stick to neonatal rat pups. Repeated needle stick during the first 8 days of life was sex-specific in altering responses to mechanical and inflammatory stimuli, but not to a thermal stimulus, at maturity. Specifically, neonatal paw needle stick males exhibited significantly greater mechanical sensitivity in response to von Frey hair testing, whereas neonatal paw needle stick females exhibited significantly greater pain behavior scores following hindpaw formalin injection. This is the first study to show such sex-dependent changes in pain responsiveness at maturity in animals having experienced repeated neonatal needle stick pain. These findings support existing evidence that there are long-term sensory sequelae following neonatal pain experiences in rats and further suggest that there are sex-linked differences in the nature of the consequences. If these relationships hold in humans, these findings suggest that even mild painful insults early in life are not without sensory consequences.
Collapse
Affiliation(s)
- Gayle G Page
- School of Nursing, Johns Hopkins University, Baltimore, MD, USA.
| | | | | |
Collapse
|
11
|
Benatti C, Alboni S, Capone G, Corsini D, Caggia F, Brunello N, Tascedda F, Blom JMC. Early neonatal inflammation affects adult pain reactivity and anxiety related traits in mice: genetic background counts. Int J Dev Neurosci 2009; 27:661-8. [PMID: 19665540 DOI: 10.1016/j.ijdevneu.2009.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 07/03/2009] [Accepted: 07/30/2009] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Protracted or recurrent pain and inflammation in the early neonatal period may cause long-lasting changes in central neural function. However, more research is necessary to better characterize the long-term behavioral sequelae of such exposure in the neonatal period. OBJECTIVES (1) to study whether timing of postnatal exposure to persistent inflammation alters responsiveness to thermal pain in the adult animal; (2) to assess whether animals experiencing early postnatal chronic inflammation display altered anxiety related behavior; (3) to study the importance of genetic background. Newborn mice (outbred strain, CD1 and F1 hybrid strain, B6C3F1) received an injection of Complete Freund's Adjuvant (CFA) or saline on either postnatal day 1 or 14 (PND1; PND14) into the left hind paw. Pain to radiant heat and anxiety were examined in 12-week-old adult animals. Adult baseline PWL was significantly decreased in CD1 mice exposed to CFA on PND 1 and 14 as compared to their saline treated counterparts. B6C3F1 mice exposed to CFA on PND14 showed markedly reduced baseline PWL compared to the PND14 saline group. Persistent inflammation experienced by B6C3F1 mice on PND1 failed to affect baseline adult thermal responsiveness. Adult mice, CD1 and B6C3F1, displayed low anxiety traits only if they had been exposed to persistent inflammation on PND1 and not on PND14. Our research suggests a role for genetic background in modulating long-term behavioral consequences of neonatal persistent inflammation: the data support the hypothesis that pain experienced very early in life differentially affects adult behavioral and emotional responsiveness in outbred (CD1) and hybrid mice (B6C3F1).
Collapse
Affiliation(s)
- Cristina Benatti
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|