1
|
King CM, Ding W, Eshelman MA, Yochum GS. TCF7L1 regulates colorectal cancer cell migration by repressing GAS1 expression. Sci Rep 2024; 14:12477. [PMID: 38816533 PMCID: PMC11139868 DOI: 10.1038/s41598-024-63346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
Dysregulated Wnt/β-catenin signaling is a common feature of colorectal cancer (CRC). The T-cell factor/lymphoid enhancer factor (TCF/LEF; hereafter, TCF) family of transcription factors are critical regulators of Wnt/β-catenin target gene expression. Of the four TCF family members, TCF7L1 predominantly functions as a transcriptional repressor. Although TCF7L1 has been ascribed an oncogenic role in CRC, only a few target genes whose expression it regulates have been characterized in this cancer. Through transcriptome analyses of TCF7L1 regulated genes, we noted enrichment for those associated with cellular migration. By silencing and overexpressing TCF7L1 in CRC cell lines, we demonstrated that TCF7L1 promoted migration, invasion, and adhesion. We localized TCF7L1 binding across the CRC genome and overlapped enriched regions with transcriptome data to identify candidate target genes. The growth arrest-specific 1 (GAS1) gene was among these and we demonstrated that GAS1 is a critical mediator of TCF7L1-dependent CRC cell migratory phenotypes. Together, these findings uncover a novel role for TCF7L1 in repressing GAS1 expression to enhance migration and invasion of CRC cells.
Collapse
Affiliation(s)
- Carli M King
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Wei Ding
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Melanie A Eshelman
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Gregory S Yochum
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
2
|
Leung AOW, Poon ACH, Wang X, Feng C, Chen P, Zheng Z, To MK, Chan WCW, Cheung M, Chan D. Suppression of apoptosis impairs phalangeal joint formation in the pathogenesis of brachydactyly type A1. Nat Commun 2024; 15:2229. [PMID: 38472182 PMCID: PMC10933404 DOI: 10.1038/s41467-024-45053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Apoptosis occurs during development when a separation of tissues is needed. Synovial joint formation is initiated at the presumptive site (interzone) within a cartilage anlagen, with changes in cellular differentiation leading to cavitation and tissue separation. Apoptosis has been detected in phalangeal joints during development, but its role and regulation have not been defined. Here, we use a mouse model of brachydactyly type A1 (BDA1) with an IhhE95K mutation, to show that a missing middle phalangeal bone is due to the failure of the developing joint to cavitate, associated with reduced apoptosis, and a joint is not formed. We showed an intricate relationship between IHH and interacting partners, CDON and GAS1, in the interzone that regulates apoptosis. We propose a model in which CDON/GAS1 may act as dependence receptors in this context. Normally, the IHH level is low at the center of the interzone, enabling the "ligand-free" CDON/GAS1 to activate cell death for cavitation. In BDA1, a high concentration of IHH suppresses apoptosis. Our findings provided new insights into the role of IHH and CDON in joint formation, with relevance to hedgehog signaling in developmental biology and diseases.
Collapse
Affiliation(s)
- Adrian On Wah Leung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Andrew Chung Hin Poon
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Xue Wang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chen Feng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Hebei Orthopedic Clinical Research Center, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Peikai Chen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Zhengfan Zheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Michael KaiTsun To
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wilson Cheuk Wing Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China.
| | - Martin Cheung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
3
|
Manuel LL, de los Ángeles César F, Pérez-Silva Nancy B, Celia PL, Elizabeth BR, Gonzalez Rosa O, Antonio GBJ, Jose S. Low-scale production and purification of a biologically active optimized form of the antitumor protein growth arrest specific 1 (GAS1) in a mammalian system for post-translational analysis. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
4
|
Cetina-Palma A, Namorado-Tónix C, Rodríguez-Muñoz R, Vergara P, Reyes-Sánchez JL, Segovia J. Characterization of the pattern of expression of Gas1 in the kidney during postnatal development in the rat. PLoS One 2023; 18:e0284816. [PMID: 37093844 PMCID: PMC10124827 DOI: 10.1371/journal.pone.0284816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/09/2023] [Indexed: 04/25/2023] Open
Abstract
Growth Arrest-Specific 1 (Gas1) is a pleiotropic protein with different functions, in the adult kidney Gas1 acts as an endogenous inhibitor of cell proliferation but it is also necessary for the maintenance and proliferation of Renal Progenitor Cells (RPC) during early development, thus it fulfills important functions in the adult kidney. However, it is not known whether or not Gas1 is expressed during postnatal development, a critical stage for renal maturation. For this reason, the main objective of this work was to characterize the expression pattern of Gas1 in the different regions of the kidney by immunofluorescence and Western blot analysis during the postnatal development of the rat. We found that Gas1 is present and has a differential expression pattern in the various regions of the nephron during postnatal development. We observed that the highest levels of expression of Gas1 occur in the adult, however, Gas1 is also expressed in RPC and interestingly, the expression of RPC markers such as the Neural cell adhesion molecule (NCAM) and Cluster of differentiation 24 (CD24) were found to have an inverse pattern of expression to Gas1 (decreases as the kidney matures) during postnatal renal maturation, this indicates a role for Gas1 in the regulation of renal cell proliferation at this stage of development.
Collapse
Affiliation(s)
- Andrea Cetina-Palma
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Carmen Namorado-Tónix
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Rafael Rodríguez-Muñoz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Paula Vergara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - José Luis Reyes-Sánchez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| |
Collapse
|
5
|
Romero-Trejo D, Mejía-Rodríguez R, Sierra-Mondragón E, Navarrete A, Pérez-Tapia M, González RO, Segovia J. The systemic administration of neural stem cells expressing an inducible and soluble form of growth arrest specific 1 inhibits mammary gland tumor growth and the formation of metastases. Cytotherapy 2020; 23:223-235. [PMID: 33168454 DOI: 10.1016/j.jcyt.2020.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AIMS Metastasis to different organs is the major cause of death in breast cancer patients. The poor clinical prognosis and lack of successful treatments for metastatic breast cancer patients demand the development of new tumor-selective therapies. Thus, it is necessary to develop treatments capable of releasing therapeutic agents to both primary tumors and metastases that avoid toxic side effects in normal tissue, and neural stem cells are an attractive vehicle for tracking tumor cells and delivering anti-cancer agents. The authorspreviously demonstrated that a soluble form of growth arrest specific 1 (GAS1) inhibits the growth of triple-negative breast tumors and glioblastoma. METHODS In this study, the authors engineered ReNcell CX (EMD Millipore, Temecula, CA, USA) neural progenitor cells to express truncated GAS1 (tGAS1) under a tetracycline/on inducible system using lentiviral vectors. RESULTS Here the authors show that treatment with ReNcell-tGAS1 in combination with tetracycline decreased primary tumor growth and inhibited the formation of metastases in tumor-bearing mice by diminishing the phosphorylation of AKT and ERK1/2 in orthotopic mammary gland tumors. Moreover, the authors observed that ReNcell-tGAS1 prolonged the survival of 4T1 tumor-bearing mice. CONCLUSIONS These data suggest that the delivery of tGAS1 by ReNcell cells could be an effective adjuvant for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Daniel Romero-Trejo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México
| | - Rosalinda Mejía-Rodríguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México
| | - Edith Sierra-Mondragón
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México
| | - Araceli Navarrete
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México
| | - Mayra Pérez-Tapia
- Departamento de Inmunología Escuela Nacional de Ciencias Biológicas, del Instituto Politécnico Nacional, México
| | - Rosa O González
- Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), México
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, México.
| |
Collapse
|
6
|
Toraih EA, Alghamdi SA, El-Wazir A, Hosny MM, Hussein MH, Khashana MS, Fawzy MS. Dual biomarkers long non-coding RNA GAS5 and microRNA-34a co-expression signature in common solid tumors. PLoS One 2018; 13:e0198231. [PMID: 30289954 PMCID: PMC6173395 DOI: 10.1371/journal.pone.0198231] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that non-coding RNAs including microRNAs (miRs) and long non-coding RNAs (lncRNAs) are aberrantly expressed in cancer, providing promising biomarkers for diagnosis, prognosis and/or therapeutic targets. We aimed in the current work to quantify the expression profile of miR-34a and one of its bioinformatically selected partner lncRNA growth arrest-specific 5 (GAS5) in a sample of Egyptian cancer patients, including three prevalent types of cancer in our region; renal cell carcinoma (RCC), glioblastoma (GB), and hepatocellular carcinoma (HCC) as well as to correlate these expression profiles with the available clinicopathological data in an attempt to clarify their roles in cancer. Quantitative real-time polymerase chain reaction analysis was applied. Different bioinformatics databases were searched to confirm the potential miRNAs-lncRNA interactions of the selected ncRNAs in cancer pathogenesis. The tumor suppressor lncRNA GAS5 was significantly under-expressed in the three types of cancer [0.08 (0.006-0.38) in RCC, p <0.001; 0.10 (0.003-0.89) in GB, p < 0.001; and 0.12 (0.015-0.74) in HCC, p < 0.001]. However, levels of miR-34a greatly varied according to the tumor type; it displayed an increased expression in RCC [4.05 (1.003-22.69), p <0.001] and a decreased expression in GB [0.35 (0.04-0.95), p <0.001]. Consistent to the computationally predicted miRNA-lncRNA interaction, negative correlations were observed between levels of GAS5 and miR-34a in RCC samples (r = -0.949, p < 0.001), GB (r = -0.518, p < 0.001) and HCC (r = -0.455, p = 0.013). Kaplan-Meier curve analysis revealed that RCC patients with down-regulated miR-34a levels had significantly poor overall survival than their corresponding (p < 0.05). Hierarchical clustering analysis showed RCC patients could be clustered by GAS5 and miR-34a co-expression profile. Our results suggest potential applicability of GAS5 and miR-34a with other conventional markers for various types of cancer. Further functional validation studies are warranted to confirm miR-34a/GAS5 interplay in cancer.
Collapse
Affiliation(s)
- Eman A. Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
- * E-mail: (MSF); (EAT)
| | - Saleh Ali Alghamdi
- Medical Genetics, Clinical Laboratory Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Aya El-Wazir
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Marwa M. Hosny
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | | | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- * E-mail: (MSF); (EAT)
| |
Collapse
|
7
|
Sánchez-Hernández L, Hernández-Soto J, Vergara P, González RO, Segovia J. Additive effects of the combined expression of soluble forms of GAS1 and PTEN inhibiting glioblastoma growth. Gene Ther 2018; 25:439-449. [DOI: 10.1038/s41434-018-0020-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
|
8
|
Pérez-Sánchez G, Jiménez A, Quezada-Ramírez MA, Estudillo E, Ayala-Sarmiento AE, Mendoza-Hernández G, Hernández-Soto J, Hernández-Hernández FC, Cázares-Raga FE, Segovia J. Annexin A1, Annexin A2, and Dyrk 1B are upregulated during GAS1-induced cell cycle arrest. J Cell Physiol 2018; 233:4166-4182. [PMID: 29030970 DOI: 10.1002/jcp.26226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022]
Abstract
GAS1 is a pleiotropic protein that has been investigated because of its ability to induce cell proliferation, cell arrest, and apoptosis, depending on the cellular or the physiological context in which it is expressed. At this point, we have information about the molecular mechanisms by which GAS1 induces proliferation and apoptosis; but very few studies have been focused on elucidating the mechanisms by which GAS1 induces cell arrest. With the aim of expanding our knowledge on this subject, we first focused our research on finding proteins that were preferentially expressed in cells arrested by serum deprivation. By using a proteomics approach and mass spectrometry analysis, we identified 17 proteins in the 2-DE protein profile of serum deprived NIH3T3 cells. Among them, Annexin A1 (Anxa1), Annexin A2 (Anxa2), dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B), and Eukaryotic translation initiation factor 3, F (eIf3f) were upregulated at transcriptional the level in proliferative NIH3T3 cells. Moreover, we demonstrated that Anxa1, Anxa2, and Dyrk1b are upregulated at both the transcriptional and translational levels by the overexpression of GAS1. Thus, our results suggest that the upregulation of Anxa1, Anxa2, and Dyrk1b could be related to the ability of GAS1 to induce cell arrest and maintain cell viability. Finally, we provided further evidence showing that GAS1 through Dyrk 1B leads not only to the arrest of NIH3T3 cells but also maintains cell viability.
Collapse
Affiliation(s)
- Gilberto Pérez-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Adriana Jiménez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Marco A Quezada-Ramírez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Enrique Estudillo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Alberto E Ayala-Sarmiento
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | | | - Justino Hernández-Soto
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Fidel C Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Febe E Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Jose Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| |
Collapse
|
9
|
Xavier GM, Seppala M, Papageorgiou SN, Fan CM, Cobourne MT. Genetic interactions between the hedgehog co-receptors Gas1 and Boc regulate cell proliferation during murine palatogenesis. Oncotarget 2018; 7:79233-79246. [PMID: 27811357 PMCID: PMC5346710 DOI: 10.18632/oncotarget.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/05/2016] [Indexed: 12/26/2022] Open
Abstract
Abnormal regulation of Sonic hedgehog (Shh) signaling has been described in a variety of human cancers and developmental anomalies, which highlights the essential role of this signaling molecule in cell cycle regulation and embryonic development. Gas1 and Boc are membrane co-receptors for Shh, which demonstrate overlapping domains of expression in the early face. This study aims to investigate potential interactions between these co-receptors during formation of the secondary palate. Mice with targeted mutation in Gas1 and Boc were used to generate Gas1; Boc compound mutants. The expression of key Hedgehog signaling family members was examined in detail during palatogenesis via radioactive in situ hybridization. Morphometric analysis involved computational quantification of BrdU-labeling and cell packing; whilst TUNEL staining was used to assay cell death. Ablation of Boc in a Gas1 mutant background leads to reduced Shh activity in the palatal shelves and an increase in the penetrance and severity of cleft palate, associated with failed elevation, increased proliferation and reduced cell death. Our findings suggest a dual requirement for Boc and Gas1 during early development of the palate, mediating cell cycle regulation during growth and subsequent fusion of the palatal shelves.
Collapse
Affiliation(s)
- Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK.,Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK
| | - Maisa Seppala
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK.,Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK
| | - Spyridon N Papageorgiou
- Department of Orthodontics, School of Dentistry, University of Bonn, 53111, Bonn, Germany.,Department of Oral Technology, School of Dentistry, University of Bonn, 53111, Bonn, Germany
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218, USA
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK.,Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK
| |
Collapse
|
10
|
Fielder GC, Yang TWS, Razdan M, Li Y, Lu J, Perry JK, Lobie PE, Liu DX. The GDNF Family: A Role in Cancer? Neoplasia 2018; 20:99-117. [PMID: 29245123 PMCID: PMC5730419 DOI: 10.1016/j.neo.2017.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFLs) comprising of GDNF, neurturin, artemin, and persephin plays an important role in the development and maintenance of the central and peripheral nervous system, renal morphogenesis, and spermatogenesis. Here we review our current understanding of GFL biology, and supported by recent progress in the area, we examine their emerging role in endocrine-related and other non-hormone-dependent solid neoplasms. The ability of GFLs to elicit actions that resemble those perturbed in an oncogenic phenotype, alongside mounting evidence of GFL involvement in tumor progression, presents novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Mahalakshmi Razdan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore; Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, P. R. China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
11
|
Lee TG, Jeong EH, Min IJ, Kim SY, Kim HR, Kim CH. Altered expression of cellular proliferation, apoptosis and the cell cycle-related genes in lung cancer cells with acquired resistance to EGFR tyrosine kinase inhibitors. Oncol Lett 2017; 14:2191-2197. [PMID: 28781659 PMCID: PMC5530116 DOI: 10.3892/ol.2017.6428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Non-small cell lung cancers harboring somatic gain-of-function mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase domain respond well to treatment with EGFR tyrosine kinase inhibitors (TKIs) including gefitinib and erlotinib. However, all patients who experience a marked improvement with these drugs eventually develop disease progression due to the acquisition of drug resistance. Approximately half of the cases with acquired resistance to EGFR TKIs can be accounted for by a second-site mutation in exon 20 of the EGFR kinase domain (T790M). However, the changes of gene expression involved in EGFR TKI resistance due to the T790M mutation remain poorly defined. The present study established lung cancer cell lines that were resistant to gefitinib or erlotinib, and these cell lines were verified to contain the EGFR T790M mutation. The differential expression of genes associated with acquired resistance was verified in the present study by mRNA microarray analysis. Among the genes whose expression was significantly altered, genes whose expression was altered in gefitinib- and erlotinib-resistant cells were focused on. Notably, a total of 1,617 genes were identified as being differentially expressed in gefitinib- and erlotinib-resistant cells. Indeed, Gene ontology analysis revealed altered expression of genes involved in the regulation of cellular proliferation, apoptosis, and the cell cycle in EGFR TKI-resistant cells. The present results demonstrate distinctive gene expression patterns of EGFR TKI-resistant lung cancer cells with the EGFR T790M mutation. The present study can provide key insights into gene expression profiles involved in conferring resistance to EGFR TKI therapy in lung cancer cells.
Collapse
Affiliation(s)
- Tae-Gul Lee
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, Republic of Korea
| | - Eun-Hui Jeong
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, Republic of Korea.,University of Science and Technology (UST), Daejeon 305-350, Republic of Korea
| | - Il Jae Min
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, Republic of Korea
| | - Seo Yun Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, Republic of Korea
| | - Hye-Ryoun Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, Republic of Korea
| | - Cheol Hyeon Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, Republic of Korea.,University of Science and Technology (UST), Daejeon 305-350, Republic of Korea
| |
Collapse
|
12
|
Luna-Antonio BI, Rodriguez-Muñoz R, Namorado-Tonix C, Vergara P, Segovia J, Reyes JL. Gas1 expression in parietal cells of Bowman’s capsule in experimental diabetic nephropathy. Histochem Cell Biol 2017; 148:33-47. [DOI: 10.1007/s00418-017-1550-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2017] [Indexed: 12/25/2022]
|
13
|
Zhou X, Chen L, Grad S, Alini M, Pan H, Yang D, Zhen W, Li Z, Huang S, Peng S. The roles and perspectives of microRNAs as biomarkers for intervertebral disc degeneration. J Tissue Eng Regen Med 2017; 11:3481-3487. [PMID: 28256798 DOI: 10.1002/term.2261] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 04/22/2016] [Accepted: 07/03/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoya Zhou
- Department of Spine Surgery, Shenzhen People's Hospital; Jinan University School of Medicine; Shenzhen 518020 China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen 518055 China
- Department of Science and Education; Shenzhen Luohu People's Hospital; Shenzhen 518001 China
| | - Lili Chen
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen 518055 China
| | - Sibylle Grad
- AO Research Institute Davos Clavadelerstrasse; 8, 7270 Davos Switzerland
| | - Mauro Alini
- AO Research Institute Davos Clavadelerstrasse; 8, 7270 Davos Switzerland
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen 518055 China
| | - Dazhi Yang
- Department of Spine Surgery, Shenzhen People's Hospital; Jinan University School of Medicine; Shenzhen 518020 China
| | - Wanxin Zhen
- Department of Spine Surgery, Shenzhen People's Hospital; Jinan University School of Medicine; Shenzhen 518020 China
| | - Zhizhong Li
- Department of Orthopedics; The First Affiliated Hospital of Jinan University; Guangzhou 510632 China
| | - Shishu Huang
- Department of Spine Surgery, Shenzhen People's Hospital; Jinan University School of Medicine; Shenzhen 518020 China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen 518055 China
- Department of Spine Surgery; West China Hospital, Sichuan University; Chengdu 610041 China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital; Jinan University School of Medicine; Shenzhen 518020 China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology; Chinese Academy of Sciences; Shenzhen 518055 China
| |
Collapse
|
14
|
Zhang Y, Cheng M, Wu L, Zhang G, Wang Z. Bisphenol A induces spermatocyte apoptosis in rare minnow Gobiocypris rarus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:18-26. [PMID: 27561114 DOI: 10.1016/j.aquatox.2016.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor, and could induce germ cells apoptosis in the testis of mammals. But whether it could affect fish in the same mechanism has not' been studied till now. In the present study, to investigate the influence of BPA on testis germ cells in fish, adult male rare minnow Gobiocypris rarus were exposed to 225μgL(-1) (0.99μM) BPA for 1, 3 and 9 weeks. Through TdT-mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM) analysis, we found that the amount of apoptotic spermatocytes significantly increased in a time dependent manner following BPA exposure. Western Blot results showed that the ratio of Bcl2/Bax, the important apoptosis regulators in intrinsic mitochondrial apoptotic pathway, was significantly decreased. qPCR showed that mRNA expression of several genes in mitochondrial apoptotic pathway including bcl2, bax, casp9, cytc and mcl1b were significantly changed following BPA exposure. In addition, mRNA expression of meiosis regulation genes (kpna7 and wee2), and genes involved in both apoptosis and meiosis (birc5, ccna1, and gsa1a) were also affected by BPA. Taken together, the present study demonstrated that BPA could induce spermatocytes apoptosis in rare minnow testis, and the apoptosis was probably under regulation of intrinsic mitochondrial apoptotic pathway. Moreover, the spermatocyte apoptosis was likely initiated by BPA induced meiosis arrest.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Mengqian Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Lang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Guo Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100 China.
| |
Collapse
|
15
|
Sun XL, Chen BY, Zhao HK, Cheng YY, Zheng MH, Duan L, Jiang W, Chen LW. Gas1 up-regulation is inducible and contributes to cell apoptosis in reactive astrocytes in the substantia nigra of LPS and MPTP models. J Neuroinflammation 2016; 13:180. [PMID: 27391369 PMCID: PMC4938987 DOI: 10.1186/s12974-016-0643-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/27/2016] [Indexed: 02/08/2023] Open
Abstract
Background Reactive astrogliosis is a remarkable pathogenetic hallmark of the brains of Parkinson’s disease (PD) patients, but its progressive fate and regulation mechanisms are poorly understood. In this study, growth arrest specific 1 (Gas1), a tumor growth suppressor oncogene, was identified as a novel modulator of the cell apoptosis of reactive astrocytes in primary culture and the injured substantia nigra. Methods Animal models and cell cultures were utilized in the present study. Lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated animal models were used to detect Gas1 expression in the brain via immunohistochemistry and western blot. Cell cultures were performed to analyze Gas1 functions in the viability and apoptosis of reactive astrocytes and SH-SY5Y cells by double labeling, CCK-8, LDH, TUNEL, flow cytometry, and siRNA knockdown methods. Results Gas1 expressions were significantly elevated in the majority of the reactive astrocytes of the brains with LPS or MPTP insults. In the injured substantia nigras, GFAP-positive astrocytes exhibited higher levels of cleaved caspase-3. In cell culture, the up-regulated Gas1 expression induced apoptosis of reactive astrocytes that were insulted by LPS in combination with interferon-γ and tumor necrosis factor-a. This effect was confirmed through siRNA knockdown of Gas1 gene expression. Finally and interestingly, the potential underlying signaling pathways were evidently related to an increase in the Bax/Bcl-2 ratio, the abundant generation of reactive oxygen species and the activation of cleaved caspase-3. Conclusions This study demonstrated that the up-regulation of inducible Gas1 contributed to the apoptosis of reactive astrocytes in the injured nigra. Gas1 signaling may function as a novel regulator of astrogliosis and is thus a potential intervention target for inflammatory events in PD conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0643-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Long Sun
- Institute of Neurosciences, Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bei-Yu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hai-Kang Zhao
- Department of Neurosurgery, Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, China
| | - Ying-Ying Cheng
- Department of Neurosurgery, Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, China
| | - Min-Hua Zheng
- Department of Developmental Biology and Genetics, Fourth Military Medical University, Xi'an, China
| | - Li Duan
- Institute of Neurosciences, Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Liang-Wei Chen
- Institute of Neurosciences, Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
16
|
Estudillo E, Zavala P, Pérez-Sánchez G, Ayala-Sarmiento AE, Segovia J. Gas1 is present in germinal niches of developing dentate gyrus and cortex. Cell Tissue Res 2015; 364:369-84. [DOI: 10.1007/s00441-015-2338-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/26/2015] [Indexed: 01/27/2023]
|
17
|
Ayala-Sarmiento AE, Martinez-Fong D, Segovia J. The Internalization of Neurotensin by the Low-Affinity Neurotensin Receptors (NTSR2 and vNTSR2) Activates ERK 1/2 in Glioma Cells and Allows Neurotensin-Polyplex Transfection of tGAS1. Cell Mol Neurobiol 2015; 35:785-95. [PMID: 25772140 DOI: 10.1007/s10571-015-0172-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/07/2015] [Indexed: 01/14/2023]
Abstract
Glioblastoma is the most malignant primary brain tumor and is very resistant to treatment; hence, it has a poor prognosis. Neurotensin receptor type 1 (NTSR1) plays a key role in cancer malignancy and has potential therapeutic applications. However, the presence and function of neurotensin (NTS) receptors in glioblastoma is not clearly established. RT-PCR assays showed that healthy (non-tumor) astroglial cells and C6 glioma cells express NTSR2 and its isoform (vNTSR2) rather than NTSR1. In glioma cells, NTS promotes the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK 1/2), an effect that was completely abolished by blocking the internalization of the NTS/NTSR complex. We demonstrated pharmacologically that the internalization is dependent on the activation of NTSR2 receptors and it was prevented by levocabastine, a NTSR2 receptor antagonist. The internalization of NTSR2 and vNTSR2 was further demonstrated by its ability to mediate gene transfer (transfection) via the NTS-polyplex system. Expression of reporter transgenes and of the pro-apoptotic soluble form of growth arrest specific 1 (tGAS1) was observed in glioma cells. A significant reduction on the viability of C6 cells was determined when tGAS1 was transfected into glioma cells. Conversely, astroglial cells could neither internalize NTS nor activate ERK 1/2 and could not be transfected by the NTS-polyplex. These results demonstrate that the internalization process of NTSR2 receptors is a key regulator necessary to trigger the activation of the ERK 1/2. Our data support a new internalization pathway in glioma C6 cells that involve NTSR2/vNTSR2, which can be used to selectively transfer therapeutic genes using the NTS-polyplex system.
Collapse
Affiliation(s)
- Alberto E Ayala-Sarmiento
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN # 2508, 07360, Mexico, DF, Mexico
| | | | | |
Collapse
|
18
|
Teschendorff AE, Li L, Yang Z. Denoising perturbation signatures reveal an actionable AKT-signaling gene module underlying a poor clinical outcome in endocrine-treated ER+ breast cancer. Genome Biol 2015; 16:61. [PMID: 25886003 PMCID: PMC4399757 DOI: 10.1186/s13059-015-0630-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
Abstract
Background Databases of perturbation gene expression signatures and drug sensitivity provide a powerful framework to develop personalized medicine approaches, by helping to identify actionable genomic markers and subgroups of patients who may benefit from targeted treatments. Results Here we use a perturbation expression signature database encompassing perturbations of over 90 cancer genes, in combination with a large breast cancer expression dataset and a novel statistical denoising algorithm, to help discern cancer perturbations driving most of the variation in breast cancer gene expression. Clustering estrogen receptor positive cancers over the perturbation activity scores recapitulates known luminal subtypes. Analysis of individual activity scores enables identification of a novel cancer subtype, defined by a 31-gene AKT-signaling module. Specifically, we show that activation of this module correlates with a poor prognosis in over 900 endocrine-treated breast cancers, a result we validate in two independent cohorts. Importantly, breast cancer cell lines with high activity of the module respond preferentially to PI3K/AKT/mTOR inhibitors, a result we also validate in two independent datasets. We find that at least 34 % of the downregulated AKT module genes are either mediators of apoptosis or have tumor suppressor functions. Conclusions The statistical framework advocated here could be used to identify gene modules that correlate with prognosis and sensitivity to alternative treatments. We propose a randomized clinical trial to test whether the 31-gene AKT module could be used to identify estrogen receptor positive breast cancer patients who may benefit from therapy targeting the PI3K/AKT/mTOR signaling axis. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0630-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China. .,Statistical Cancer Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Linlin Li
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| | - Zhen Yang
- CAS Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
19
|
Jiménez A, López-Ornelas A, Estudillo E, González-Mariscal L, González RO, Segovia J. A soluble form of GAS1 inhibits tumor growth and angiogenesis in a triple negative breast cancer model. Exp Cell Res 2014; 327:307-17. [DOI: 10.1016/j.yexcr.2014.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/04/2014] [Accepted: 06/22/2014] [Indexed: 12/18/2022]
|
20
|
López-Ornelas A, Vergara P, Segovia J. Neural stem cells producing an inducible and soluble form of Gas1 target and inhibit intracranial glioma growth. Cytotherapy 2014; 16:1011-23. [DOI: 10.1016/j.jcyt.2013.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/19/2013] [Accepted: 12/12/2013] [Indexed: 01/14/2023]
|
21
|
Zhang YW, Zheng Y, Wang JZ, LU XX, Wang Z, Chen LB, Guan XX, Tong JD. Integrated analysis of DNA methylation and mRNA expression profiling reveals candidate genes associated with cisplatin resistance in non-small cell lung cancer. Epigenetics 2014; 9:896-909. [PMID: 24699858 PMCID: PMC4065187 DOI: 10.4161/epi.28601] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/15/2014] [Accepted: 03/19/2014] [Indexed: 01/07/2023] Open
Abstract
DNA methylation plays a critical role during the development of acquired chemoresistance. The aim of this study was to identify candidate DNA methylation drivers of cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). The A549/DDP cell line was established by continuous exposure of A549 cells to increasing concentrations of DDP. Gene expression and methylation profiling were determined by high-throughput microarrays. Relationship of methylation status and DDP response was validated in primary tumor cell culture and the Cancer Genome Atlas (TCGA) samples. Cell proliferation, apoptosis, cell cycle, and response to DDP were determined in vitro and in vivo. A total of 372 genes showed hypermethylation and downregulation in A549/DDP cells, and these genes were involved in most fundamental biological processes. Ten candidate genes (S100P, GDA, WISP2, LOXL1, TIMP4, ICAM1, CLMP, HSP8, GAS1, BMP2) were selected, and exhibited varying degrees of association with DDP resistance. Low dose combination of 5-aza-2'-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) reversed drug resistance of A549/DDP cells in vitro and in vivo, along with demethylation and restoration of expression of candidate genes (GAS1, TIMP4, ICAM1 and WISP2). Forced expression of GAS1 in A549/DDP cells by gene transfection contributed to increased sensitivity to DDP, proliferation inhibition, cell cycle arrest, apoptosis enhancement, and in vivo growth retardation. Together, our study demonstrated that a panel of candidate genes downregulated by DNA methylation induced DDP resistance in NSCLC, and showed that epigenetic therapy resensitized cells to DDP.
Collapse
Affiliation(s)
- You-Wei Zhang
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
- Department of Oncology; Yangzhou No. 1 Hospital; The Second Clinical School of Yangzhou University; Yangzhou, PR China
- Department of Oncology; Affiliated Xuzhou Central Hospital; Xuzhou Medical College; Xuzhou, PR China
| | - Yun Zheng
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
| | - Jing-Zi Wang
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
| | - Xiao-Xia LU
- Department of Oncology; Yangzhou No. 1 Hospital; The Second Clinical School of Yangzhou University; Yangzhou, PR China
| | - Zhu Wang
- Department of Oncology; Yangzhou No. 1 Hospital; The Second Clinical School of Yangzhou University; Yangzhou, PR China
| | - Long-Bang Chen
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
| | - Xiao-Xiang Guan
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
| | - Jian-Dong Tong
- Department of Oncology; Yangzhou No. 1 Hospital; The Second Clinical School of Yangzhou University; Yangzhou, PR China
| |
Collapse
|
22
|
MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway. Biochem Biophys Res Commun 2013; 441:958-63. [PMID: 24220341 DOI: 10.1016/j.bbrc.2013.11.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/01/2013] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are fundamental regulators of cell proliferation, differentiation, and apoptosis, and are implicated in tumorigenesis of many cancers. MiR-34a is best known as a tumor suppressor through repression of growth factors and oncogenes. Growth arrest specific1 (GAS1) protein is a tumor suppressor that inhibits cancer cell proliferation and induces apoptosis through inhibition of RET receptor tyrosine kinase. Both miR-34a and GAS1 are frequently down-regulated in various tumors. However, it has been reported that while GAS1 is down-regulated in papillary thyroid carcinoma (PTC), miR-34a is up-regulated in this specific type of cancer, although their potential roles in PTC tumorigenesis have not been examined to date. A computational search revealed that miR-34a putatively binds to the 3'-UTR of GAS1 gene. In the present study, we confirmed previous findings that miR-34a is up-regulated and GAS1 down-regulated in PTC tissues. Further studies indicated that GAS1 is directly targeted by miR-34a. Overexpression of miR-34a promoted PTC cell proliferation and colony formation and inhibited apoptosis, whereas knockdown of miR-34a showed the opposite effects. Silencing of GAS1 had similar growth-promoting effects as overexpression of miR-34a. Furthermore, miR-34a overexpression led to activation of PI3K/Akt/Bad signaling pathway in PTC cells, and depletion of Akt reversed the pro-growth, anti-apoptotic effects of miR-34a. Taken together, our results demonstrate that miR-34a regulates GAS1 expression to promote proliferation and suppress apoptosis in PTC cells via PI3K/Akt/Bad pathway. MiR-34a functions as an oncogene in PTC.
Collapse
|
23
|
Zarco N, Bautista E, Cuéllar M, Vergara P, Flores-Rodriguez P, Aguilar-Roblero R, Segovia J. Growth arrest specific 1 (GAS1) is abundantly expressed in the adult mouse central nervous system. J Histochem Cytochem 2013; 61:731-48. [PMID: 23813868 DOI: 10.1369/0022155413498088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Growth arrest specific 1 (GAS1) is a pleiotropic protein that induces apoptosis and cell arrest in different tumors, but it is also involved in the development of the nervous system and other tissues and organs. This dual ability is likely caused by its capacity to interact both by inhibiting the intracellular signaling cascade induced by glial cell-line derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. The presence of GAS1 mRNA has been described in adult mouse brain, and here we corroborated this observation. We then proceeded to determine the distribution of the protein in the adult central nervous system (CNS). We detected, by western blot analysis, expression of GAS1 in olfactory bulb, caudate-putamen, cerebral cortex, hippocampus, mesencephalon, medulla oblongata, cerebellum, and cervical spinal cord. To more carefully map the expression of GAS1, we performed double-label immunohistochemistry and noticed expression of GAS1 in neurons in all brain areas examined. We also observed expression of GAS1 in astroglial cells, albeit the pattern of expression was more restricted than that seen in neurons. Briefly, in the present article, we report the widespread distribution and cellular localization of the GAS1 native protein in adult mammalian CNS.
Collapse
Affiliation(s)
- Natanael Zarco
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN (NZ,EB,PV,PF-R,JS)
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu B, Chen Q, Tian D, Wu L, Dong H, Wang J, Ji B, Zhu X, Cai Q, Wang L, Zhang S. BMP4 reverses multidrug resistance through modulation of BCL-2 and GDNF in glioblastoma. Brain Res 2013; 1507:115-24. [PMID: 23466456 DOI: 10.1016/j.brainres.2013.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/16/2013] [Accepted: 02/19/2013] [Indexed: 01/15/2023]
Abstract
Patients with glioblastoma are commonly treated with chemotherapy. But a significant proportion of patients develop disease progression after an initial response to chemotherapy. Presently, there is no standard of care for such patients. The bone morphogenetic protein 4 (BMP4) has been reported to play a tumor-suppressing role in glioblastoma, but its role in glioblastoma multidrug resistance (MDR) is not clear. We reported that BMP4 can reverse MDR of glioblastoma through the inhibition of B-cell lymphoma 2(BCL-2) and glial cell derived neurotrophic factor (GDNF). We showed that the expression level of BMP4 was lower in glioblastoma compared to normal brain tissue, and also showed that BMP4 expression decreased in multidrug resistance cell line U251/TMZ compared to U251 cells. Our research demonstrated that over-expression of BMP4 can reverse the multidrug resistance. BCL-2 and GDNF were inhibited when BMP4 was over-expressed, and this data were consistent with the negative relationship in human samples; analysis of 40 patient's glioblastoma and brain samples revealed a significant negative correlation between BMP4 and BCL-2, GDNF. When BCL-2 and GDNF were knocked down, the effect of BMP4 in regulating MDR was partially lost. This novel result showed, for the first time, that BMP4 can reverse MDR in glioblastoma, which involved negative inhibition of BCL-2 and GDNF.
Collapse
Affiliation(s)
- Baohui Liu
- Renmin Hospital, Wuhan University, 238 Jiefang Street, Wuhan 430060, Hubei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang H, Zhou X, Zhang Y, Zhu H, Zhao L, Fan L, Wang Y, Gang Y, Wu K, Liu Z, Fan D. Growth arrest-specific gene 1 is downregulated and inhibits tumor growth in gastric cancer. FEBS J 2012; 279:3652-3664. [PMID: 22846196 DOI: 10.1111/j.1742-4658.2012.08726.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gastric cancer is one of the leading causes of malignancy-related mortality in the world, and malignant growth is a crucial characteristic in gastric cancer. In our previous study, we found that growth arrest-specific gene 1 (GAS1) suppression was involved in making gastric cancer cells multidrug-resistant by protecting them from drug-induced apoptosis. In the present study, we investigated the potential role of GAS1 in the growth and proliferation of gastric cancer. We demonstrated that GAS1 expression was decreased in gastric cancer, and patients without GAS1 expression showed shorter survival times than those with GAS1 expression. Both gain-of-function (by overexpression of GAS1) and loss-of-function (by GAS1-specific small interfering RNA knockdown) studies showed that increased GAS1 expression significantly reduced the colony-forming ability of gastric cancer cells in vitro and reduced cell growth in vivo, whereas decreased GAS1 expression had the opposite effects. Moreover, upregulation of GAS1 induced cell apoptosis, and downregulation of GAS1 inhibited apoptosis. Furthermore, we demonstrated that GAS1 could induce gastric cancer cell apoptosis, at least in part through modulating the Bcl-2/Bax ratio and the activity of caspase-3. Taken together, our results strongly indicate that GAS1 expression was decreased in gastric cancer and was predictive of a poor prognosis. Restoration of GAS1 expression inhibited cell growth and promoted apoptosis of gastric cancer cells, at least in part through modulating the Bcl-2/Bax ratio and activating caspase-3, suggesting that GAS1 might be used as a novel therapeutic candidate for gastric cancer.
Collapse
Affiliation(s)
- Honghong Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Xiong Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yongguo Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Hongwu Zhu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Lina Zhao
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yi Gang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Zhiguo Liu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
26
|
Zarco N, González-Ramírez R, González RO, Segovia J. GAS1 induces cell death through an intrinsic apoptotic pathway. Apoptosis 2012; 17:627-35. [DOI: 10.1007/s10495-011-0696-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Sacilotto N, Espert A, Castillo J, Franco L, López-Rodas G. Epigenetic transcriptional regulation of the growth arrest-specific gene 1 (Gas1) in hepatic cell proliferation at mononucleosomal resolution. PLoS One 2011; 6:e23318. [PMID: 21858068 PMCID: PMC3153484 DOI: 10.1371/journal.pone.0023318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/15/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Gas1 (growth arrest-specific 1) gene is known to inhibit cell proliferation in a variety of models, but its possible implication in regulating quiescence in adult tissues has not been examined to date. The knowledge of how Gas1 is regulated in quiescence may contribute to understand the deregulation occurring in neoplastic diseases. METHODOLOGY/PRINCIPAL FINDINGS Gas1 expression has been studied in quiescent murine liver and during the naturally synchronized cell proliferation after partial hepatectomy. Chromatin immunoprecipitation at nucleosomal resolution (Nuc-ChIP) has been used to carry out the study preserving the in vivo conditions. Transcription has been assessed at real time by quantifying the presence of RNA polymerase II in coding regions (RNApol-ChIP). It has been found that Gas1 is expressed not only in quiescent liver but also at the cell cycle G(1)/S transition. The latter expression peak had not been previously reported. Two nucleosomes, flanking a nucleosome-free region, are positioned close to the transcription start site. Both nucleosomes slide in going from the active to the inactive state and vice versa. Nuc-ChIP analysis of the acquisition of histone epigenetic marks show distinctive features in both active states: H3K9ac and H3K4me2 are characteristic of transcription in G(0) and H4R3me2 in G(1)/S transition. Sequential-ChIP analysis revealed that the "repressing" mark H3K9me2 colocalize with several "activating" marks at nucleosome N-1 when Gas1 is actively transcribed suggesting a greater plasticity of epigenetic marks than proposed until now. The recruitment of chromatin-remodeling or modifying complexes also displayed distinct characteristics in quiescence and the G(1)/S transition. CONCLUSIONS/SIGNIFICANCE The finding that Gas1 is transcribed at the G(1)/S transition suggests that the gene may exert a novel function during cell proliferation. Transcription of this gene is modulated by specific "activating" and "repressing" epigenetic marks, and by chromatin remodeling and histone modifying complexes recruitment, at specific nucleosomes in Gas1 promoter.
Collapse
Affiliation(s)
- Natalia Sacilotto
- Chromatin Laboratory, Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Valencia, Spain
| | - Antonio Espert
- Chromatin Laboratory, Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Valencia, Spain
| | - Josefa Castillo
- Chromatin Laboratory, Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Valencia, Spain
| | - Luis Franco
- Chromatin Laboratory, Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Valencia, Spain
| | - Gerardo López-Rodas
- Chromatin Laboratory, Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Valencia, Spain
- * E-mail: .
| |
Collapse
|
28
|
Lentiviral transfer of an inducible transgene expressing a soluble form of Gas1 causes glioma cell arrest, apoptosis and inhibits tumor growth. Cancer Gene Ther 2010; 18:87-99. [DOI: 10.1038/cgt.2010.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Saqui-Salces M, Merchant JL. Hedgehog signaling and gastrointestinal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:786-95. [PMID: 20307590 DOI: 10.1016/j.bbamcr.2010.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 12/23/2022]
Abstract
Hedgehog (Hh) signaling is critical for embryonic development and in differentiation, proliferation, and maintenance of multiple adult tissues. De-regulation of the Hh pathway is associated with birth defects and cancer. In the gastrointestinal tract, Hh ligands Sonic (Shh) and Indian (Ihh), as well as the receptor Patched (Ptch1), and transcription factors of Glioblastoma family (Gli) are all expressed during development. In the adult, Shh expression is restricted to the stomach and colon, while Ihh expression occurs throughout the luminal gastrointestinal tract, its expression being highest in the proximal duodenum. Several studies have demonstrated a requirement for Hh signaling during gastrointestinal tract development. However to date, the specific role of the Hh pathway in the adult stomach and intestine is not completely understood. The current review will place into context the implications of recent published data related to the biochemistry and cell biology of Hh signaling on the luminal gastrointestinal tract during development, normal physiology and subsequently carcinogenesis.
Collapse
Affiliation(s)
- Milena Saqui-Salces
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
30
|
Zhao L, Pan Y, Gang Y, Wang H, Jin H, Tie J, Xia L, Zhang Y, He L, Yao L, Qiao T, Li T, Liu Z, Fan D. Identification of GAS1 as an epirubicin resistance-related gene in human gastric cancer cells with a partially randomized small interfering RNA library. J Biol Chem 2009; 284:26273-85. [PMID: 19638344 DOI: 10.1074/jbc.m109.028068] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epirubicin has been widely used for chemotherapeutic treatment of gastric cancer; however, intrinsic and acquired chemoresistance remains an obstacle to successful management. The mechanisms underlying epirubicin resistance are still not well defined. Here we report the construction and application of a partially randomized retrovirus library of 4 x 10(6) small interfering RNAs to identify novel genes whose suppression confers epirubicin resistance in gastric cancer cells SGC7901. From 12 resistant cell colonies, two small interfering RNAs targeting GAS1 (growth arrest-specific 1) and PTEN (phosphatase and tensin homolog), respectively, were identified and validated. We identified a previously unrecognized chemoresistance role for GAS1. GAS1 suppression resulted in significant epirubicin resistance and cross-resistance to 5-fluorouracil and cisplatin in various gastric cancer cell lines. GAS1 suppression promoted multidrug resistance through apoptosis inhibition, partially by up-regulating the Bcl-2/Bax ratio that was abolished by Bcl-2 inhibition. GAS1 suppression induced chemoresistance partially by increasing drug efflux in an ATP-binding cassette transporter and drug-dependent manner. P-glycoprotein (P-gp) and BCRP (breast cancer resistance protein) but not MRP-1 were up-regulated, and targeted knockdown of P-gp and BCRP could partially reverse GAS1 suppression-induced epirubicin resistance. Verapamil, a P-gp inhibitor, could reverse P-gp substrate (epirubicin) but not non-P-gp substrate (5-fluorouracil and cisplatin) resistance in GAS1-suppressed gastric cancer cells. BCRP down-regulation could partially reverse 5-fluorouracil but not cisplatin resistance induced by GAS1 suppression, suggesting 5-fluorouracil but not cisplatin was a BCRP substrate. These results suggest that GAS1 might be a target to overcome multidrug resistance and provide a novel approach to identifying candidate genes that suppress chemoresistance of gastric cancers.
Collapse
Affiliation(s)
- Lina Zhao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|