1
|
de Freitas DS, Lopes GADG, Nascimento BR, Madureira AP, Campos-Junior PHA. C is-9, trans-11 and trans-10, cis-12 conjugated linoleic acid gastric administration during the pregestational and gestational periods does not influence the follicular endowment of the progeny. Anim Reprod 2023; 20:e20220124. [PMID: 37795199 PMCID: PMC10546913 DOI: 10.1590/1984-3143-ar2022-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/29/2023] [Indexed: 10/06/2023] Open
Abstract
Fetal programming suggests that maternal stimulation and nutrition during the period of fetal development can program the progeny. Conjugated linoleic acid (CLA), an isomer of linoleic acid, has been characterized in several aspects, but few studies have been performed on its involvement in reproduction and fetal programming. The aim of this study was to evaluate the F1, F2 and F3 progeny of female mice supplemented with CLA during the pregestational and gestational periods with respect to biometric and reproductive parameters, as well as ovarian morphophysiology. The F1 progeny of mothers supplemented with CLA exhibited stable weight gain, while the F2 progeny showed no effects (P=0.0187 and P=0.0245, respectively). A reduction in Lee's Index was observed in both generations at the second post-weaning evaluation week in the animals treated with CLA (P=0.0100 and P=0.0078, respectively). The F2 generation showed an increase in the anogenital index in both sexes of the animals treated with CLA (P= 0.0114 and P<0.0001, female and male respectively). CLA administration to mothers did not affect any of the following in their progeny: ovarian follicle mobilization (P>0.05), follicle number (P>0.05) and the integrated density of the lipid content of oocytes included in antral follicles (P>0.05). This study evaluated the use of CLA in mothers and found that it did not affect the progeny regarding murine reproductive performance, suggesting that this supplement can be used safely.
Collapse
Affiliation(s)
- Danielle Storino de Freitas
- Laboratório de Pesquisa em Reprodução e Desenvolvimento, Universidade Federal de São João del Rei, São João del-Rei, MG, Brasil
| | | | - Barbara Rodrigues Nascimento
- Laboratório de Pesquisa em Reprodução e Desenvolvimento, Universidade Federal de São João del Rei, São João del-Rei, MG, Brasil
| | - Ana Paula Madureira
- Laboratório de Pesquisa em Reprodução e Desenvolvimento, Universidade Federal de São João del Rei, São João del-Rei, MG, Brasil
| | | |
Collapse
|
2
|
Huang Y, Liu Q, Huang G, Wen J, Chen G. Hypothalamic Kisspeptin Neurons Regulates Energy Metabolism and Reproduction Under Chronic Stress. Front Endocrinol (Lausanne) 2022; 13:844397. [PMID: 35685211 PMCID: PMC9170882 DOI: 10.3389/fendo.2022.844397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, affecting energy homeostasis and reproduction. The aim of this study was to investigate whether stress affected energy metabolism and reproduction through the glucocorticoid receptor on Kisspeptin neurons in the hypothalamus. METHODS Four groups included control group, chronic restraint stress group, Kisspeptin specific glucocorticoid receptor knock out group (KGRKO) and KGRKO+stress group. Body weight, food intake, estrous cycle of female mice, serum sex hormone levels, serum corticosterone and prolactin, Kisspeptin expression in the hypothalamus were measured. RESULTS The restraint stress group showed a significant weight loss compared with the control group. KGRKO+restraint stress group had a reduced weight loss, suggesting that restraint stress might partially affect the energy metabolism through GR on Kisspeptin neurons. In terms of reproductive function, the restraint stress group and the KGRKO+restraint stress group showed missing pre-estrus period or prolonged estrous cycles. Serum LH and FSH in KGRKO + restraint stress group decreased significantly compared with KGRKO group. However, no significant difference in the level of serum testosterone was observed. After restraint stress, the levels of serum cortisol and prolactin in male and female mice were significantly higher than the control group, and the hypothalamus Kiss1 gene mRNA expression and Kisspeptin protein expression were significantly decreased. CONCLUSION Chronic restraint stress induced weight loss and negative changes in reproduction, which were partially mediated by glucocorticoid receptor on Kisspeptin neurons in the hypothalamus.
Collapse
Affiliation(s)
- Yinqiong Huang
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qinyu Liu
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Guifeng Huang
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Junping Wen
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Gang Chen, ; Junping Wen,
| | - Gang Chen
- Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical, Fuzhou, China
- *Correspondence: Gang Chen, ; Junping Wen,
| |
Collapse
|
3
|
Ruiz D, Padmanabhan V, Sargis RM. Stress, Sex, and Sugar: Glucocorticoids and Sex-Steroid Crosstalk in the Sex-Specific Misprogramming of Metabolism. J Endocr Soc 2020; 4:bvaa087. [PMID: 32734132 PMCID: PMC7382384 DOI: 10.1210/jendso/bvaa087] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Early-life exposures to environmental insults can misprogram development and increase metabolic disease risk in a sex-dependent manner by mechanisms that remain poorly characterized. Modifiable factors of increasing public health relevance, such as diet, psychological stress, and endocrine-disrupting chemicals, can affect glucocorticoid receptor signaling during gestation and lead to sex-specific postnatal metabolic derangements. Evidence from humans and animal studies indicate that glucocorticoids crosstalk with sex steroids by several mechanisms in multiple tissues and can affect sex-steroid-dependent developmental processes. Nonetheless, glucocorticoid sex-steroid crosstalk has not been considered in the glucocorticoid-induced misprogramming of metabolism. Herein we review what is known about the mechanisms by which glucocorticoids crosstalk with estrogen, androgen, and progestogen action. We propose that glucocorticoid sex-steroid crosstalk is an understudied mechanism of action that requires consideration when examining the developmental misprogramming of metabolism, especially when assessing sex-specific outcomes.
Collapse
Affiliation(s)
- Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine; University of Illinois at Chicago, Chicago, Illinois.,Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
4
|
Ristić N, Severs W, Nestorović N, Jarić I, Manojlović-Stojanoski M, Trifunović S, Pendovski L, Milosević V. Effects of Prenatal Dexamethasone on the Rat Pituitary Gland and Gonadotropic Cells in Female Offspring. Cells Tissues Organs 2016; 201:148-58. [DOI: 10.1159/000443987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids have a strong influence on growth and maturation of fetal organ systems, but overexposure to exogenous glucocorticoids may retard fetal growth and alter developmental processes in sensitive tissues. The aim of this study was to specifically determine whether prenatal exposure to dexamethasone (Dx) altered normal development and function of pituitary gonadotropic cells in neonatal, infant and peripubertal female offspring. On day 16 of pregnancy, rat dams received 1.0 mg Dx/kg body weight (BW) s.c., followed by 0.5 mg Dx/kg BW on days 17 and 18 of gestation. Control gravid females received the same volume of saline. Female offspring were sacrificed on days 5, 16 and 38 after delivery. The volume of the pituitary gland estimated using Cavalieri's principle was significantly reduced (p < 0.05). Using a fractionator-physical disector method, we found reduced total numbers of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) cells (p < 0.05), accompanied by a decrease (p < 0.05) in serum concentrations of FSH and LH, while the relative intensity of FSH and LH immunofluorescence remained unchanged in neonatal, infant and peripubertal female offspring prenatally exposed to Dx. The data document that overexposure to Dx during fetal development evokes developmental programming of the female reproductive system at the pituitary cellular level, which may be associated with impaired reproductive function.
Collapse
|
5
|
Tungalagsuvd A, Matsuzaki T, Iwasa T, Munkhzaya M, Yiliyasi M, Kawami T, Kato T, Kuwahara A, Irahara M. The expression of orexigenic and anorexigenic factors in middle‐aged female rats that had been subjected to prenatal undernutrition. Int J Dev Neurosci 2015; 49:1-5. [DOI: 10.1016/j.ijdevneu.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Altankhuu Tungalagsuvd
- Department of Obstetrics and GynecologyTokushima UniversityGraduate SchoolInstitute of Medical Sciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and GynecologyTokushima UniversityGraduate SchoolInstitute of Medical Sciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Takeshi Iwasa
- Department of Obstetrics and GynecologyTokushima UniversityGraduate SchoolInstitute of Medical Sciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Munkhsaikhan Munkhzaya
- Department of Obstetrics and GynecologyTokushima UniversityGraduate SchoolInstitute of Medical Sciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Mayila Yiliyasi
- Department of Obstetrics and GynecologyTokushima UniversityGraduate SchoolInstitute of Medical Sciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Takako Kawami
- Department of Obstetrics and GynecologyTokushima UniversityGraduate SchoolInstitute of Medical Sciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Takeshi Kato
- Department of Obstetrics and GynecologyTokushima UniversityGraduate SchoolInstitute of Medical Sciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Akira Kuwahara
- Department of Obstetrics and GynecologyTokushima UniversityGraduate SchoolInstitute of Medical Sciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| | - Minoru Irahara
- Department of Obstetrics and GynecologyTokushima UniversityGraduate SchoolInstitute of Medical Sciences3‐18‐15 Kuramoto‐ChoTokushima770‐8503Japan
| |
Collapse
|
6
|
Parodi DA, Greenfield M, Evans C, Chichura A, Alpaugh A, Williams J, Martin MB. Alteration of mammary gland development and gene expression by in utero exposure to arsenic. Reprod Toxicol 2015; 54:66-75. [PMID: 25543096 PMCID: PMC4465030 DOI: 10.1016/j.reprotox.2014.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/07/2014] [Accepted: 12/16/2014] [Indexed: 01/02/2023]
Abstract
Early life exposure to estrogens and estrogen like contaminants in the environment is thought to contribute to the early onset of puberty and consequently increases the risk of developing breast cancer in the exposed female. The results of this study show that in utero exposure to the metalloestrogen arsenite altered mammary gland development prior to its effect on puberty onset. In the prepubertal gland, in utero exposure resulted in an increase in the number of mammosphere-forming cells and an increase in branching, epithelial cells, and density. In the postpubertal gland, in utero exposure resulted in the overexpression of estrogen receptor-alpha (ERα) that was due to the increased and altered response of the ERα transcripts derived from exons O and OT to estradiol. These results suggest that, in addition to advancing puberty onset, in utero exposure to arsenite alters the pre- and postpubertal development of the mammary gland and possibly, the risk of developing breast cancer.
Collapse
Affiliation(s)
- Daniela A Parodi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20007, USA
| | - Morgan Greenfield
- Department of Oncology, Georgetown University, Washington, DC 20007, USA
| | - Claire Evans
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20007, USA
| | - Anna Chichura
- Department of Oncology, Georgetown University, Washington, DC 20007, USA
| | - Alexandra Alpaugh
- Department of Oncology, Georgetown University, Washington, DC 20007, USA
| | - James Williams
- Department of Oncology, Georgetown University, Washington, DC 20007, USA
| | - Mary Beth Martin
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20007, USA; Department of Oncology, Georgetown University, Washington, DC 20007, USA.
| |
Collapse
|
7
|
Sui S, Jia Y, He B, Li R, Li X, Cai D, Song H, Zhang R, Zhao R. Maternal Low-protein Diet Alters Ovarian Expression of Folliculogenic and Steroidogenic Genes and Their Regulatory MicroRNAs in Neonatal Piglets. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1695-704. [PMID: 25358362 PMCID: PMC4213680 DOI: 10.5713/ajas.2014.14335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/25/2014] [Accepted: 08/23/2014] [Indexed: 11/27/2022]
Abstract
Maternal malnutrition during pregnancy may give rise to female offspring with disrupted ovary functions in adult age. Neonatal ovary development predisposes adult ovary function, yet the effect of maternal nutrition on the neonatal ovary has not been described. Therefore, here we show the impact of maternal protein restriction on the expression of folliculogenic and steroidogenic genes, their regulatory microRNAs and promoter DNA methylation in the ovary of neonatal piglets. Sows were fed either standard-protein (SP, 15% crude protein) or low-protein (LP, 7.5% crude protein) diets throughout gestation. Female piglets born to LP sows showed significantly decreased ovary weight relative to body weight (p<0.05) at birth, which was accompanied with an increased serum estradiol level (p<0.05). The LP piglets demonstrated higher ratio of bcl-2 associated X protein/B cell lymphoma/leukemia-2 mRNA (p<0.01), which was associated with up-regulated mRNA expression of bone morphogenic protein 4 (BMP4) (p<0.05) and proliferating cell nuclear antigen (PCNA) (p<0.05). The steroidogenic gene, cytochrome P450 aromatase (CYP19A1) was significantly down-regulated (p<0.05) in LP piglets. The alterations in ovarian gene expression were associated with a significant down-regulation of follicle-stimulating hormone receptor mRNA expression (p<0.05) in LP piglets. Moreover, three microRNAs, including miR-423-5p targeting both CYP19A1 and PCNA, miR-378 targeting CYP19A1 and miR-210 targeting BMP4, were significantly down-regulated (p<0.05) in the ovary of LP piglets. These results suggest that microRNAs are involved in mediating the effect of maternal protein restriction on ovarian function through regulating the expression of folliculogenic and steroidogenic genes in newborn piglets.
Collapse
Affiliation(s)
- Shiyan Sui
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China ; The Department of Agriculture and Biological Sciences, Dali University of Yunnan Province, Dali 671003, China
| | - Yimin Jia
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin He
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Runsheng Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Demin Cai
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haogang Song
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongkui Zhang
- Shanghai Farm of Bright Food (Group) Co., Ltd, Dafeng 224100, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Guzmán C, García-Becerra R, Aguilar-Medina MA, Méndez I, Merchant-Larios H, Zambrano E. Maternal protein restriction during pregnancy and/or lactation negatively affects follicular ovarian development and steroidogenesis in the prepubertal rat offspring. Arch Med Res 2014; 45:294-300. [PMID: 24819035 DOI: 10.1016/j.arcmed.2014.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/14/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Maternal protein restriction during rat pregnancy and lactation is associated with alterations in reproductive function of female offspring including delayed onset of puberty, decreased fertility and premature reproductive aging. These alterations may be related to ovarian prepubertal development, distribution of follicle populations and their steroidogenic capacities. We undertook this study to evaluate the ovarian function of prepubertal female offspring exposed to maternal protein restriction during pregnancy and/or lactation. METHODS Adult female Wistar rats were fed a control (C-20% casein diet) or restricted isocaloric diet (R-10% casein) during pregnancy--first letter--and lactation--second letter, to form four groups, CC, RR, CR, RC. Ovaries were collected from 21-day-old female offspring. Preantral and antral follicles were quantified and mRNA expression of key genes involved in follicular development and steroidogenesis (gonadotropin receptors, StAR, P450scc and P450 aromatase) was evaluated. Serum gonadotropin levels were measured. RESULTS Significantly decreased numbers of preantral and antral follicles were observed in CR and RC ovaries compared with CC. LH levels were lower and FSH higher in CR pups. mRNA expression of LH receptor (LH-R) was decreased in RR in comparison with the other groups. CR and RC expressed higher StAR, RC increased and RR decreased P450scc, whereas RR and CR decreased aromatase expression in comparison with CC. CONCLUSIONS Maternal protein restriction influences prepubertal ovarian follicular number and steroidogenic function in the rat offspring, although RR and CR nutritional schemes have similar outcomes, the mechanisms affecting ovarian function are at different levels of the hypothalamic-pituitary-ovarian axis.
Collapse
Affiliation(s)
- Carolina Guzmán
- HIPAM, Unidad de Medicina Experimental, Hospital General de México, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México, D.F., México
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SalvadorZubirán, México, D.F., México
| | - Marco Antonio Aguilar-Medina
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SalvadorZubirán, México, D.F., México
| | - Isabel Méndez
- Instituto de Neurobiología, UNAM, Campus UNAM-Juriquilla, México
| | - Horacio Merchant-Larios
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, México, D.F., México
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SalvadorZubirán, México, D.F., México.
| |
Collapse
|
9
|
Maternal dexamethasone exposure during pregnancy in rats disrupts gonadotropin-releasing hormone neuronal development in the offspring. Cell Tissue Res 2013; 355:409-23. [PMID: 24374911 PMCID: PMC3921457 DOI: 10.1007/s00441-013-1765-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/29/2013] [Indexed: 12/02/2022]
Abstract
The migration of gonadotropin-releasing hormone (GnRH) neurons from the olfactory placode to the preoptic area (POA) from embryonic day 13 is important for successful reproduction during adulthood. Whether maternal glucocorticoid exposure alters GnRH neuronal morphology and number in the offspring is unknown. This study determines the effect of maternal dexamethasone (DEX) exposure on enhanced green fluorescent protein (EGFP) driven by GnRH promoter neurons (TG-GnRH) in transgenic rats dual-labelled with GnRH immunofluorescence (IF-GnRH). The TG-GnRH neurons were examined in intact male and female rats at different postnatal ages, as a marker for GnRH promoter activity. Pregnant females were subcutaneously injected with DEX (0.1 mg/kg) or vehicle daily during gestation days 13–20 to examine the number of GnRH neurons in P0 male offspring. The total number of TG-GnRH neurons and TG-GnRH/IF-GnRH neuronal ratio increased from P0 and P5 stages to P47–52 stages, suggesting temporal regulation of GnRH promoter activity during postnatal development in intact rats. In DEX-treated P0 males, the number of IF-GnRH neurons decreased within the medial septum, organum vasculosom of the lamina terminalis (OVLT) and anterior hypothalamus. The percentage of TG-GnRH neurons with branched dendritic structures decreased in the OVLT of DEX-P0 males. These results suggest that maternal DEX exposure affects the number and dendritic development of early postnatal GnRH neurons in the OVLT/POA, which may lead to altered reproductive functions in adults.
Collapse
|
10
|
Kinouchi R, Matsuzaki T, Iwasa T, Gereltsetseg G, Nakazawa H, Kunimi K, Kuwahara A, Yasui T, Irahara M. Prepubertal exposure to glucocorticoid delays puberty independent of the hypothalamic Kiss1‐GnRH system in female rats. Int J Dev Neurosci 2012; 30:596-601. [DOI: 10.1016/j.ijdevneu.2012.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/23/2012] [Accepted: 09/01/2012] [Indexed: 11/26/2022] Open
Affiliation(s)
- Riyo Kinouchi
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐choTokushima770‐8503Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐choTokushima770‐8503Japan
| | - Takeshi Iwasa
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐choTokushima770‐8503Japan
| | - Ganbat Gereltsetseg
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐choTokushima770‐8503Japan
| | - Hiroshi Nakazawa
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐choTokushima770‐8503Japan
| | - Kotaro Kunimi
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐choTokushima770‐8503Japan
| | - Akira Kuwahara
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐choTokushima770‐8503Japan
| | - Toshiyuki Yasui
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐choTokushima770‐8503Japan
| | - Minoru Irahara
- Department of Obstetrics and GynecologyThe University of Tokushima Graduate SchoolInstitute of Health Biosciences3‐18‐15 Kuramoto‐choTokushima770‐8503Japan
| |
Collapse
|
11
|
Soga T, Dalpatadu SL, Wong DW, Parhar IS. Neonatal dexamethasone exposure down-regulates GnRH expression through the GnIH pathway in female mice. Neuroscience 2012; 218:56-64. [PMID: 22626647 DOI: 10.1016/j.neuroscience.2012.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 04/12/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Synthetic glucocorticoid (dexamethasone; DEX) treatment during the neonatal stage is known to affect reproductive activity. However, it is still unknown whether neonatal stress activates gonadotropin-inhibitory hormone (GnIH) synthesizing cells in the dorsomedial hypothalamus (DMH), which could have pronounced suppressive action on gonadotropin-releasing hormone (GnRH) neurons, leading to delayed pubertal onset. This study was designed to determine the effect of neonatal DEX (1.0mg/kg) exposure on reproductive maturation. Therefore, GnRH, GnIH and GnIH receptors, G-protein coupled receptors (GPR) 147 and GPR74 mRNA levels were measured using quantitative real-time PCR in female mice at postnatal (P) days 21, 30 and in estrus stage mice, aged between P45-50. DEX-treated females of P45-50 had delayed vaginal opening, and irregular estrus cycles and lower GnRH expression in the preoptic area (POA) when compared with age-matched controls. The expression levels of GPR147 and GPR74 mRNA in the POA increased significantly in DEX-treated female mice of P21 and P45-50 compared to controls. In addition, GPR147 and GPR74 mRNA expression was observed in laser captured single GnRH neurons in the POA. Although there was no difference in GnIH mRNA expression in the DMH, immunostained GnIH cell numbers in the DMH increased in DEX-treated females of P45-50 compared to controls. Taken together, the results show that the delayed pubertal onset could be due to the inhibition of GnRH gene expression after neonatal DEX treatment, which may be accounted for in part by the inhibitory signals from the up-regulated GnIH-GnIH receptor pathway to the POA.
Collapse
Affiliation(s)
- T Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway Campus, 46150, Malaysia.
| | | | | | | |
Collapse
|
12
|
Smith JT, Spencer SJ. Preweaning over- and underfeeding alters onset of puberty in the rat without affecting kisspeptin. Biol Reprod 2012; 86:145, 1-8. [PMID: 22378761 DOI: 10.1095/biolreprod.111.097758] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The perinatal nutritional environment can permanently influence body weight, potentially leading to changes in puberty onset and reproductive function. We hypothesized that perinatal under- or overfeeding would alter puberty onset and influence concentrations of a neuropeptide crucial for successful puberty, kisspeptin. We manipulated Wistar rat litter sizes to derive small (SL), control (CL), and large (LL) litters containing 4, 12, and 20 rat pups respectively. This manipulation results in an overweight phenotype in SL rats and a lean phenotype in LL that persists throughout life. To investigate whether successful puberty onset is affected by neonatal under- or overfeeding, we examined indices of growth and development, including the onset of puberty, as well as the central expression of Kiss1 mRNA in these pups. Male LL rats reached puberty later than those from CL. These males also had reduced plasma testosterone and elevated 17beta-estradiol concentrations at puberty. The age at puberty onset was not affected in SL males despite accelerated growth. In females, puberty onset was not significantly delayed by having a lean phenotype, and steroid hormones were not affected. The age at onset was, however, younger in the SL females. Kiss1 mRNA in the hypothalamus was not affected by neonatal nutrition either at puberty or 7 days later. Our findings show early life underfeeding in males and overfeeding in females significantly affects puberty onset, altering steroid hormone concentrations in males, but this is not related to changes in hypothalamic kisspeptin.
Collapse
Affiliation(s)
- Jeremy T Smith
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
13
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:68-71. [PMID: 22179589 DOI: 10.1097/med.0b013e32834fd881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|