1
|
Al Mutairi F, Joueidi F, Alshalan M, Aloyouni E, Ballow M, Aldrees M, Al Abdulrahman A, Al Tuwaijri A, Abbas S, Umair M, Alfadhel M. Biallelic HMGXB4 loss-of-function variant causes intellectual disability, developmental delay, and dysmorphic features. Heliyon 2024; 10:e35361. [PMID: 39166056 PMCID: PMC11334805 DOI: 10.1016/j.heliyon.2024.e35361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Background HMGXB4 (additionally known as HMG2L1) is a non-histone DNA-binding protein that contains a single HMG-box domain. HMGXB4 was originally described in Xenopus where it was seen to negatively regulate the Wnt/β-catenin signaling pathway. Materials and methods In this study, we conducted a genetic and clinical evaluation of a single family with three affected individuals suffering from intellectual disability (ID), global developmental delay (GDD) and dysmorphic facial features.Whole genome sequencing (WGS) and Sanger sequencing were performed on the affected individuals' DNA to identify genetic variations. Additionally, a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to assess gene expression in both the affected and unaffected individuals in the family. Result WGS identified a homozygous frameshift variant c.1193_1196del p. (Lys398Argfs × 25) in exon 5 of the HMGXB4 gene (OMIM 604702), which completely segregated the disease phenotype in the family. Furthermore, RT-qPCR revealed a substantial decrease in the HMGXB4 gene expression in the affected individuals as compared to the unaffected individuals of the family. Conclusions The current study is the first evidence linking a genetic variant in the HMGXB4 gene to ID, GDD, and dysmorphic facial features. Therefore, it is possible that HMGXB4 contributes significantly to developmental milestones and may be responsible for neurodevelopmental disorders in humans.
Collapse
Affiliation(s)
- Fuad Al Mutairi
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, 11426, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, 11481, Saudi Arabia
| | - Faisal Joueidi
- College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Maha Alshalan
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, 11426, Saudi Arabia
| | - Essra Aloyouni
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, 11481, Saudi Arabia
| | - Mariam Ballow
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, 11481, Saudi Arabia
| | - Mohammed Aldrees
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, 11481, Saudi Arabia
| | - Abdulkareem Al Abdulrahman
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, 11481, Saudi Arabia
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, 11481, Saudi Arabia
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, 11426, Saudi Arabia
| | - Safdar Abbas
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, 11481, Saudi Arabia
| | - Majid Alfadhel
- Genetic and Precision Medicine Department, King Abdullah Specialized Children Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA), Riyadh, 11426, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, 11481, Saudi Arabia
| |
Collapse
|
2
|
Raddatz BB, Spitzbarth I, Matheis KA, Kalkuhl A, Deschl U, Baumgärtner W, Ulrich R. Microarray-Based Gene Expression Analysis for Veterinary Pathologists: A Review. Vet Pathol 2017. [PMID: 28641485 DOI: 10.1177/0300985817709887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-throughput, genome-wide transcriptome analysis is now commonly used in all fields of life science research and is on the cusp of medical and veterinary diagnostic application. Transcriptomic methods such as microarrays and next-generation sequencing generate enormous amounts of data. The pathogenetic expertise acquired from understanding of general pathology provides veterinary pathologists with a profound background, which is essential in translating transcriptomic data into meaningful biological knowledge, thereby leading to a better understanding of underlying disease mechanisms. The scientific literature concerning high-throughput data-mining techniques usually addresses mathematicians or computer scientists as the target audience. In contrast, the present review provides the reader with a clear and systematic basis from a veterinary pathologist's perspective. Therefore, the aims are (1) to introduce the reader to the necessary methodological background; (2) to introduce the sequential steps commonly performed in a microarray analysis including quality control, annotation, normalization, selection of differentially expressed genes, clustering, gene ontology and pathway analysis, analysis of manually selected genes, and biomarker discovery; and (3) to provide references to publically available and user-friendly software suites. In summary, the data analysis methods presented within this review will enable veterinary pathologists to analyze high-throughput transcriptome data obtained from their own experiments, supplemental data that accompany scientific publications, or public repositories in order to obtain a more in-depth insight into underlying disease mechanisms.
Collapse
Affiliation(s)
- Barbara B Raddatz
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center of Systems Neuroscience, Hannover, Germany
| | - Ingo Spitzbarth
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center of Systems Neuroscience, Hannover, Germany
| | - Katja A Matheis
- 3 Department of Nonclinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach (Riß), Germany
| | - Arno Kalkuhl
- 3 Department of Nonclinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach (Riß), Germany
| | - Ulrich Deschl
- 3 Department of Nonclinical Drug Safety, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach (Riß), Germany
| | - Wolfgang Baumgärtner
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center of Systems Neuroscience, Hannover, Germany
| | - Reiner Ulrich
- 1 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,2 Center of Systems Neuroscience, Hannover, Germany.,4 Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald, Germany
| |
Collapse
|
3
|
Rouhiainen A, Zhao X, Vanttola P, Qian K, Kulesskiy E, Kuja-Panula J, Gransalke K, Grönholm M, Unni E, Meistrich M, Tian L, Auvinen P, Rauvala H. HMGB4 is expressed by neuronal cells and affects the expression of genes involved in neural differentiation. Sci Rep 2016; 6:32960. [PMID: 27608812 PMCID: PMC5036535 DOI: 10.1038/srep32960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/18/2016] [Indexed: 12/21/2022] Open
Abstract
HMGB4 is a new member in the family of HMGB proteins that has been characterized in sperm cells, but little is known about its functions in somatic cells. Here we show that HMGB4 and the highly similar rat Transition Protein 4 (HMGB4L1) are expressed in neuronal cells. Both proteins had slow mobility in nucleus of living NIH-3T3 cells. They interacted with histones and their differential expression in transformed cells of the nervous system altered the post-translational modification statuses of histones in vitro. Overexpression of HMGB4 in HEK 293T cells made cells more susceptible to cell death induced by topoisomerase inhibitors in an oncology drug screening array and altered variant composition of histone H3. HMGB4 regulated over 800 genes in HEK 293T cells with a p-value ≤0.013 (n = 3) in a microarray analysis and displayed strongest association with adhesion and histone H2A –processes. In neuronal and transformed cells HMGB4 regulated the expression of an oligodendrocyte marker gene PPP1R14a and other neuronal differentiation marker genes. In conclusion, our data suggests that HMGB4 is a factor that regulates chromatin and expression of neuronal differentiation markers.
Collapse
Affiliation(s)
- Ari Rouhiainen
- Neuroscience center, University of Helsinki, Finland.,Department of Biosciences, University of Helsinki, Finland
| | - Xiang Zhao
- Neuroscience center, University of Helsinki, Finland.,Schools of Pharmacy and Medicine, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | | | - Kui Qian
- Institute of Biotechnology, University of Helsinki, Finland
| | - Evgeny Kulesskiy
- Neuroscience center, University of Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Finland
| | | | | | | | - Emmanual Unni
- Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marvin Meistrich
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Tian
- Neuroscience center, University of Helsinki, Finland.,Psychiatry Research Center, Beijing Hui Long Guan Hospital, Peking University, Beijing, China
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Finland
| | | |
Collapse
|
4
|
Li L, Ulrich R, Baumgärtner W, Gerhauser I. Interferon-stimulated genes-essential antiviral effectors implicated in resistance to Theiler's virus-induced demyelinating disease. J Neuroinflammation 2015; 12:242. [PMID: 26703877 PMCID: PMC4690264 DOI: 10.1186/s12974-015-0462-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023] Open
Abstract
Background Experimental infection of mice with Theiler’s murine encephalomyelitis virus (TMEV) is used as an animal model of human multiple sclerosis. TMEV persists in susceptible mouse strains and causes a biphasic disease consisting of acute polioencephalomyelitis and chronic demyelinating leukomyelitis. In contrast, resistant mice eliminate the virus within 2 to 4 weeks, which seems to be based on a strong antiviral innate immune response including the activation of the type I interferon (IFN) pathway. Several interferon-stimulated genes (ISGs) such as IFN-stimulated protein of 15 kDa (ISG15), protein kinase R (PKR), and 2′5′-oligoadenylate synthetase (OAS) function as antiviral effectors and might contribute to virus elimination. Nevertheless, detailed investigations of the type I IFN pathway during TMEV-induced demyelinating disease (TMEV-IDD) are lacking. Methods The present study evaluated microarray data of the spinal cord obtained from susceptible SJL/J mice after TMEV infection focusing on IFN-related genes. Moreover, ISG gene and protein expression was determined in mock- and TMEV-infected SJL/J mice and compared to its expression in resistant C57BL/6 mice using real- time PCR, immunohistochemistry, and immunofluorescence. Results Interestingly, despite of increased ISG gene expression during TMEV-IDD, ISG protein expression was impaired in SJL/J mice and mainly restricted to demyelinated lesions. In contrast, high ISG protein levels were found in spinal cord gray and white matter of C57BL/6 compared to SJL/J mice in the acute and chronic phase of TMEV-IDD. In both mouse strains, ISG15 was mainly found in astrocytes and endothelial cells, whereas PKR was predominantly expressed by microglia/macrophages, oligodendrocytes, and neurons. Only few cells were immunopositive for OAS proteins. Conclusions High levels of antiviral ISG15 and PKR proteins in the spinal cord of C57BL/6 mice might block virus replication and play an important role in the resistance to TMEV-IDD. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0462-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany. .,Center of Systems Neuroscience Hannover, Hannover, Germany.
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany. .,Center of Systems Neuroscience Hannover, Hannover, Germany.
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany. .,Center of Systems Neuroscience Hannover, Hannover, Germany.
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| |
Collapse
|