1
|
Arruda BP, Cruz-Ochoa NA, Serra FT, Xavier GF, Nogueira MI, Takada SH. Melatonin attenuates developmental deficits and prevents hippocampal injuries in male and female rats subjected to neonatal anoxia. Int J Dev Neurosci 2024; 84:520-532. [PMID: 38858858 DOI: 10.1002/jdn.10351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Hypoxia in preterm infants is a clinical condition that has been associated with cognitive and behavioral disturbances for which treatment strategies are strongly required. Melatonin administration following brain insults has been considered a promising therapeutic strategy due to its antioxidant and anti-inflammatory effects. Not surprisingly, it has been extensively studied for preventing disturbances following brain injury. This study evaluated the effects of melatonin on developmental disturbances, memory disruption, and hippocampal cell loss induced by neonatal anoxia in rats. Neonatal Wistar rats were subjected to anoxia and subsequently treated with melatonin. Later, maturation of physical characteristics, ontogeny of reflexes, learning and memory in the Morris water maze (MWM), and estimates of the number of hippocampal neurons, were evaluated. Melatonin treatment attenuated (1) female anoxia-induced delay in superior incisor eruption, (2) female anoxia-induced vibrissae placement reflexes, and (3) male and female anoxia-induced hippocampal neuronal loss. Melatonin also promoted an increase (5) in swimming speeds in the MWM. In addition, PCA analysis showed positive associations between the acoustic startle, auditory canal open, and free fall righting parameters and negative associations between the male vehicle anoxia group and the male melatonin anoxia group. Therefore, melatonin treatment attenuates both anoxia-induced developmental deficits and hippocampal neuronal loss.
Collapse
Affiliation(s)
- Bruna Petrucelli Arruda
- Neurosciences Laboratory, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Natalia Andrea Cruz-Ochoa
- Neurosciences Laboratory, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernando Tadeu Serra
- Santos Young Doctor Program, Municipal Secretary of Education of Santos, Santos, SP, Brazil
| | - Gilberto Fernando Xavier
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Inês Nogueira
- Neurosciences Laboratory, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Silvia Honda Takada
- Neurogenetic Laboratory, Mathematic, Computation and Cognition Center, Neuroscience and Cognition Program, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
2
|
Ramakrishna K, Krishnamurthy S. Indole-3-carbinol ameliorated the neurodevelopmental deficits in neonatal anoxic injury in rats. Int J Dev Neurosci 2023; 83:31-43. [PMID: 36259087 DOI: 10.1002/jdn.10234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anoxia is linked to long-lasting neurodevelopmental deficits. Due to the lack of pharmacological intervention to treat neonatal anoxia, there is interest in finding new molecules for its treatment. Indole-3-carbinol (I3C) has shown neuroprotective effects in some disease conditions. However, the neuroprotective role of I3C in neonatal anoxia has not been explored. Consequently, we have investigated the effect of I3C on neonatal anoxia-induced brain injury and neurodevelopmental deficits. Rat pups after 30 h of birth were subjected to two episodes of anoxia (10 min in each) at a time interval of 24 h by flowing 100% nitrogen. I3C was administered within 30 min of the second episode of anoxia on a postnatal day (PND) 3 and continued for PND 9. Neurodevelopmental deficits, cortical mitochondrial membrane potential (MMP), opening of mitochondrial permeability transition pore (MPTP), electron transport chain (ETC) enzyme activities, oxidative stress, hypoxia-inducible factor-1α (HIF-1α) levels, histopathological changes, and apoptosis were measured. I3C treatment dose-dependently ameliorated the neurodevelopmental deficits and somatic growth in anoxic pups. I3C improved mitochondrial function by enhancing the MMP, mitochondrial ETC enzymes, and antioxidants. It blocked the MPTP opening and release of cytochrome C in anoxic pups. Further, I3C reduced the elevated cortical HIF-1α in neonatal anoxic pups. Furthermore, I3C ameliorated histopathological abnormalities and mitochondrial-mediated apoptotic indicators Cyt C, caspase-9, and caspase-3. Our study concludes that I3C improved neuronal development in anoxic pups by enhancing mitochondrial function, reducing HIF-1α, and mitigating apoptosis.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, India.,Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (IIT BHU), Varanasi, India
| |
Collapse
|
3
|
Bleeser T, Brenders A, Hubble TR, Van de Velde M, Deprest J, Rex S, Devroe S. Preclinical evidence for anaesthesia-induced neurotoxicity. Best Pract Res Clin Anaesthesiol 2023. [DOI: 10.1016/j.bpa.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
4
|
Bleeser T, Hubble TR, Van de Velde M, Deprest J, Rex S, Devroe S. Introduction and history of anaesthesia-induced neurotoxicity and overview of animal models. Best Pract Res Clin Anaesthesiol 2022. [DOI: 10.1016/j.bpa.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Yang H, Zhang Y, Wu X, Gan P, Luo X, Zhong S, Zuo W. Effects of Acute Exposure to 3500 MHz (5G) Radiofrequency Electromagnetic Radiation on Anxiety‐Like Behavior and the Auditory Cortex in Guinea Pigs. Bioelectromagnetics 2022; 43:106-118. [PMID: 35066900 DOI: 10.1002/bem.22388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/26/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Honghong Yang
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Yuanyuan Zhang
- Department of Otolaryngology‐Head and Neck Surgery Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Xianwen Wu
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Ping Gan
- Department of Dependable Service Computing in Cyber Physical Society, Key Laboratory of the Ministry of Education Chongqing University Chongqing China
| | - Xiaoli Luo
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Shixun Zhong
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Wenqi Zuo
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
6
|
Samaiya PK, Krishnamurthy S, Kumar A. Mitochondrial dysfunction in perinatal asphyxia: role in pathogenesis and potential therapeutic interventions. Mol Cell Biochem 2021; 476:4421-4434. [PMID: 34472002 DOI: 10.1007/s11010-021-04253-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/20/2021] [Indexed: 01/13/2023]
Abstract
Perinatal asphyxia (PA)-induced brain injury may present as hypoxic-ischemic encephalopathy in the neonatal period, and long-term sequelae such as spastic motor deficits, intellectual disability, seizure disorders and learning disabilities. The brain injury is secondary to both the hypoxic-ischemic event and oxygenation-reperfusion following resuscitation. Following PA, a time-dependent progression of neuronal insult takes place in terms of transition of cell death from necrosis to apoptosis. This transition is the result of time-dependent progression of pathomechanisms which involve excitotoxicity, oxidative stress, and ultimately mitochondrial dysfunction in developing brain. More precisely mitochondrial respiration is suppressed and calcium signalling is dysregulated. Consequently, Bax-dependent mitochondrial permeabilization occurs leading to release of cytochrome c and activation of caspases leading to transition of cell death in developing brain. The therapeutic window lies within this transition process. At present, therapeutic hypothermia (TH) is the only clinical treatment available for treating moderate as well as severe asphyxia in new-born as it attenuates secondary loss of high-energy phosphates (ATP) (Solevåg et al. in Free Radic Biol Med 142:113-122, 2019; Gunn et al. in Pediatr Res 81:202-209, 2017), improving both short- and long-term outcomes. Mitoprotective therapies can offer a new avenue of intervention alone or in combination with therapeutic hypothermia for babies with birth asphyxia. This review will explore these mitochondrial pathways, and finally will summarize past and current efforts in targeting these pathways after PA, as a means of identifying new avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Puneet K Samaiya
- Department of Pharmacy, Shri G.S. Institute of Technology and Science, Indore, MP, 452003, India.
| | - Sairam Krishnamurthy
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, BHU, Varanasi, UP, India
| |
Collapse
|
7
|
Bleeser T, Van Der Veeken L, Fieuws S, Devroe S, Van de Velde M, Deprest J, Rex S. Effects of general anaesthesia during pregnancy on neurocognitive development of the fetus: a systematic review and meta-analysis. Br J Anaesth 2021; 126:1128-1140. [PMID: 33836853 DOI: 10.1016/j.bja.2021.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The US Food and Drug Administration warned that exposure of pregnant women to general anaesthetics may impair fetal brain development. This review systematically evaluates the evidence underlying this warning. METHODS PubMed, EMBASE, and Web of Science were searched from inception until April 3, 2020. Preclinical and clinical studies were eligible. Exclusion criteria included case reports, in vitro models, chronic exposures, and exposure only during delivery. Meta-analyses were performed on standardised mean differences. The primary outcome was overall effect on learning/memory. Secondary outcomes included markers of neuronal injury (apoptosis, synapse formation, neurone density, and proliferation) and subgroup analyses. RESULTS There were 65 preclinical studies included, whereas no clinical studies could be identified. Anaesthesia during pregnancy impaired learning and memory (standardised mean difference -1.16, 95% confidence interval -1.46 to -0.85) and resulted in neuronal injury in all experimental models, irrespective of the anaesthetic drugs and timing in pregnancy. Risk of bias was high in most studies. Rodents were the most frequently used animal species, although their brain development differs significantly from that in humans. In a minority of studies, anaesthesia was combined with surgery. Monitoring and strict control of physiological homeostasis were below preclinical and clinical standards in many studies. The duration and frequency of exposure and anaesthetic doses were often much higher than in clinical routine. CONCLUSION Anaesthesia-induced neurotoxicity during pregnancy is a consistent finding in preclinical studies, but translation of these results to the clinical situation is limited by several factors. Clinical observational studies are needed. PROSPERO REGISTRATION NUMBER CRD42018115194.
Collapse
Affiliation(s)
- Tom Bleeser
- Department of Anaesthesiology, UZ Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Lennart Van Der Veeken
- Department of Obstetrics and Gynaecology, UZ Leuven, Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Steffen Fieuws
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, KU Leuven, Leuven, Belgium
| | - Sarah Devroe
- Department of Anaesthesiology, UZ Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Marc Van de Velde
- Department of Anaesthesiology, UZ Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Obstetrics and Gynaecology, UZ Leuven, Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Institute for Women's Health, University College London, London, UK
| | - Steffen Rex
- Department of Anaesthesiology, UZ Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Domesticated and optimized mitochondria: Mitochondrial modifications based on energetic status and cellular stress. Life Sci 2020; 265:118766. [PMID: 33245965 DOI: 10.1016/j.lfs.2020.118766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria are the main source of energy and play an important role in coupling intracellular and intercellular metabolic cooperation. Cellular stress and energetic status can affect various mitochondrial behaviors, including mitochondrial biogenesis, mitophagy, assembly of respiratory chain supercomplexes and mitochondrial distribution. These modifications usually result in adaptive adjustment of mitochondrial output and resistance to cellular stress. However, when the pro-death signals triggered by excessive damage converge to mitochondria, mitochondrial reserve and functional status can profoundly determine the direction of cell death, and even affect the survival and death of surrounding or distant tissues. In this review, we discuss multiple mitochondrial modifications in eukaryotes based on metabolic status and cellular stress, and review the emerging knowledge about the effects of mitochondrial dysfunction on the fate of cells and surrounding tissues.
Collapse
|
9
|
Hypoxia, hypercarbia, and mortality reporting in studies of anaesthesia-related neonatal neurodevelopmental delay in rodent models. Eur J Anaesthesiol 2020; 37:70-84. [DOI: 10.1097/eja.0000000000001105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Gupta SK, Patel SK, Tomar MS, Singh SK, Mesharam MK, Krishnamurthy S. Long-term exposure of 2450 MHz electromagnetic radiation induces stress and anxiety like behavior in rats. Neurochem Int 2019; 128:1-13. [DOI: 10.1016/j.neuint.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
11
|
Short-term westernized (HFFD) diet fed in adolescent rats: Effect on glucose homeostasis, hippocampal insulin signaling, apoptosis and related cognitive and recognition memory function. Behav Brain Res 2019; 361:113-121. [DOI: 10.1016/j.bbr.2018.12.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
|
12
|
Rebamipide Mitigates Impairments in Mitochondrial Function and Bioenergetics with α-Synuclein Pathology in 6-OHDA-Induced Hemiparkinson’s Model in Rats. Neurotox Res 2019; 35:542-562. [DOI: 10.1007/s12640-018-9983-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022]
|
13
|
Samaiya PK, Narayan G, Kumar A, Krishnamurthy S. 2,4 Dinitrophenol Attenuates Mitochondrial Dysfunction and Improves Neurobehavioral Outcomes Postanoxia in Neonatal Rats. Neurotox Res 2018; 34:121-136. [PMID: 29582254 DOI: 10.1007/s12640-018-9873-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Following anoxia, a rapid and marked mitochondrial-linked cell death occurs in the cerebral cortex of newborn rats which leads to insult advancement within a couple of days and causes lifelong neurobehavioral abnormalities. The present study investigated the role of 2,4 dinitrophenol (2,4 DNP) in three doses, i.e.,1, 2.5, and 5 mg/kg on anoxia-induced time-dependent mitochondrial dysfunction and associated neurobehavioral outcome using a well-established global model of anoxia. Briefly, rat pups of 30-h age (P2) were subjected to two episodes of anoxia (10 min each) at 24 h of the time interval in an enclosed chamber supplied with 100% N2 and immersed in a water bath (35-37 °C) to avoid hypothermia. Results demonstrated that the uncoupler 2,4 DNP, in the dose 2.5 and 5 mg/kg injected i.p. within 5 min after second anoxic episode significantly (P < 0.05) preserved mitochondrial function on day 7 preferentially by maintaining mitochondrial membrane potential (MMP) and inhibiting mitochondrial permeability transition (MPT) pore. Further, 2,4 DNP preserved mitochondrial function by improving different states of mitochondrial respiration (s2, s3, s4, s5), respiratory control ratio (RCR), antioxidant enzyme system like superoxide dismutase (SOD) and catalase (CAT), and mitochondrial complex enzymes (I, II, IV, V) after anoxia. Furthermore, a marked decrease in the levels of expression of cytochrome C (cyt C) and pro-apoptotic (Bcl-2 family) and apoptotic (caspase-9/3) proteins was observed on day 7 indicating that the treatment with 2,4 DNP prevented mitochondrial dysfunction and further insult progression (day 1 to day 7). Moreover, 2,4 DNP decreased the apoptotic cell death on day 7 and overall improved the neurobehavioral outcomes like reflex latency and hanging latency which suggests its role in treating neonatal anoxia.
Collapse
Affiliation(s)
- Puneet K Samaiya
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gopeshwar Narayan
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
14
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 711] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
15
|
Gupta SK, Mesharam MK, Krishnamurthy S. Electromagnetic radiation 2450 MHz exposure causes cognition deficit with mitochondrial dysfunction and activation of intrinsic pathway of apoptosis in rats. J Biosci 2018. [DOI: 10.1007/s12038-018-9744-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Samaiya PK, Narayan G, Kumar A, Krishnamurthy S. Tempol (4 hydroxy-tempo) inhibits anoxia-induced progression of mitochondrial dysfunction and associated neurobehavioral impairment in neonatal rats. J Neurol Sci 2017; 375:58-67. [DOI: 10.1016/j.jns.2017.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|