1
|
Yang S, Wei Z, Wu J, Sun M, Ma Y, Liu G. Proteomic analysis of liver tissues in chicken embryo at Day 16 and Day 20 reveals antioxidant mechanisms. J Proteomics 2021; 243:104258. [PMID: 33962068 DOI: 10.1016/j.jprot.2021.104258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/10/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022]
Abstract
To investigate the mechanisms of the defense system and antioxidant defense system during chicken embryo development, protein profiling of liver tissues in chicken embryo at Day 16 and Day 20 was conducted. TMT was used to analyze the liver tissues proteomes with significantly different activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in chicken embryo. PRM was operated to validate the target differentially abundant proteins (DAPs) using the same samples. The result showed a total of 34 DAPs were identified. Among these, 9 were upregulated and 25 were downregulated. The screened DAPs strictly related to regulation of oxidoreductase activity (DDO and GAS2L1), response to stress (ERAD2 and SAA), immune system process (GAL3 and PDCD4), and lipid regulation and metabolism (ETNPPL, APOV1, LIPM, and APOA4). These analyses indicated that the antioxidant enzyme activity of chicken embryo is regulated through different pathways. Correlation analysis revealed a linear relationship between mRNA and protein expression and 12 genes (ORM1, C8B, KPNA2, CA4, C1S, SULT1B, ETNPPL, ERCC6L, DDO, SERPINF1, VAT1L, and APOA4) were detected to be differently expressed both at mRNA and protein levels. In consequence, these findings are an important resource that can be used in future studies of antioxidant mechanisms in chicken embryo. BIOLOGICAL SIGNIFICANCE: The genetic mechanisms of antioxidant activity are still unclear in chicken embryo. In the article, the combined transcriptomic and proteomic analysis is used to further explore potential signaling pathways and differentially abundant proteins related to antioxidant activity. These findings will facilitate a better understanding of the mechanism and these DAPs can be further investigated as candidate markers to predict the activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Shaohua Yang
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Zhangqi Wei
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Jianxin Wu
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Miaomiao Sun
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Yilong Ma
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China
| | - Guoqing Liu
- College of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China.
| |
Collapse
|
2
|
Lian S, Zhao L, Xun X, Lou J, Li M, Li X, Wang S, Zhang L, Hu X, Bao Z. Genome-Wide Identification and Characterization of SODs in Zhikong Scallop Reveals Gene Expansion and Regulation Divergence after Toxic Dinoflagellate Exposure. Mar Drugs 2019; 17:md17120700. [PMID: 31842317 PMCID: PMC6949909 DOI: 10.3390/md17120700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
As filter-feeding animals mainly ingesting microalgae, bivalves could accumulate paralytic shellfish toxins (PSTs) produced by harmful algae through diet. To protect themselves from the toxic effects of PSTs, especially the concomitant oxidative damage, the production of superoxide dismutase (SOD), which is the only eukaryotic metalloenzyme capable of detoxifying superoxide, may assist with toxin tolerance in bivalves. To better understand this process, in the present study, we performed the first systematic analysis of SOD genes in bivalve Chlamys farreri, an important aquaculture species in China. A total of six Cu/Zn-SODs (SOD1-6) and two Mn-SODs (SOD7, SOD8) were identified in C. farreri, with gene expansion being revealed in Cu/Zn-SODs. In scallops exposed to two different PSTs-producing dinoflagellates, Alexandrium minutum and A. catenella, expression regulation of SOD genes was analyzed in the top ranked toxin-rich organs, the hepatopancreas and the kidney. In hepatopancreas, which mainly accumulates the incoming PSTs, all of the six Cu/Zn-SODs showed significant alterations after A. minutum exposure, with SOD1, 2, 3, 5, and 6 being up-regulated, and SOD4 being down-regulated, while no significant change was detected in Mn-SODs. After A. catenella exposure, up-regulation was observed in SOD2, 4, 6, and 8, and SOD7 was down-regulated. In the kidney, where PSTs transformation occurs, SOD4, 5, 6, and 8 were up-regulated, and SOD7 was down-regulated in response to A. minutum feeding. After A. catenella exposure, all the Cu/Zn-SODs except SOD1 were up-regulated, and SOD7 was down-regulated in kidney. Overall, in scallops after ingesting different toxic algae, SOD up-regulation mainly occurred in the expanded Cu/Zn-SOD group, and SOD6 was the only member being up-regulated in both toxic organs, which also showed the highest fold change among all the SODs, implying the importance of SOD6 in protecting scallops from the stress of PSTs. Our results suggest the diverse function of scallop SODs in response to the PST-producing algae challenge, and the expansion of Cu/Zn-SODs might be implicated in the adaptive evolution of scallops or bivalves with respect to antioxidant defense against the ingested toxic algae.
Collapse
Affiliation(s)
- Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
| | - Jiarun Lou
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
| | - Xu Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-8203-1970; Fax: +86-0532-8203-1802
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
3
|
Yang S, Wang LL, Shi Z, Ou X, Wang W, Chen X, Liu G. Transcriptional profiling of liver tissues in chicken embryo at day 16 and 20 using RNA sequencing reveals differential antioxidant enzyme activity. PLoS One 2018; 13:e0192253. [PMID: 29408927 PMCID: PMC5800670 DOI: 10.1371/journal.pone.0192253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/18/2018] [Indexed: 12/31/2022] Open
Abstract
Considering the high proportion of polyunsaturated fatty acids, the antioxidant defense of chick embryo tissues is vital during the oxidative stress experienced at hatching. In order to better understand the mechanisms of the defense system during chicken embryo development, we detected the activity of antioxidant enzymes during the incubation of chicken embryo. Results showed that the activity of superoxide dismutase (SOD) and (GSH-PX) in livers were higher than those in hearts. Based on these results, liver tissues were used as the follow-up study materials, which were obtained from chicken embryo at day 16 and day 20. Thus, we used RNA sequencing (RNA-Seq) analysis to identify the transcriptome from 6 liver tissues. In total, we obtained 45,552,777-45,462,856 uniquely mapped reads and 18,837 mRNA transcripts, across the 6 liver samples. Among these, 1,154 differentially expressed genes (p<0.05, foldchange≥1) were identified between the high and low groups, and 1,069 GO terms were significantly enriched (p<0.05). Of these, 10 GO terms were related to active oxygen defense and antioxidant enzyme activity. GO enrichment and KEGG pathway analysis indicated that GSTA2, GSTA4, MGST1, GPX3, and HAO2 participated in glutathione metabolism, and were considered as the most promising candidate genes affecting the antioxidant enzyme activity of chicken embryo at day 16 and day 20. Using RNA-Seq and differential gene expression, our study here investigated the complexity of the liver transcriptome in chick embryos and analyzed the key genes associated with the antioxidant enzyme.
Collapse
Affiliation(s)
- Shaohua Yang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Lu Lu Wang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Zhaoyuan Shi
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Xiaoqian Ou
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Wei Wang
- Agricultural Products Quality and Safety Supervision and Management Bureau, Xuancheng, Anhui, P. R. China
| | - Xue Chen
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Guoqing Liu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| |
Collapse
|