1
|
Li Y, Liang X, Chen N, Yuan X, Wang J, Wu Q, Ding Y. The promotion of biofilm dispersion: a new strategy for eliminating foodborne pathogens in the food industry. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 39054781 DOI: 10.1080/10408398.2024.2354524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.
Collapse
Affiliation(s)
- Yangfu Li
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinmin Liang
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nuo Chen
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Samadi A, Kermanshahi Pour A, Beims RF, Xu CC. Delignified porous wood as biofilm support for 1,4-dioxane-degrading bacterial consortium. ENVIRONMENTAL TECHNOLOGY 2024; 45:2541-2557. [PMID: 36749305 DOI: 10.1080/09593330.2023.2178330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Delignified porous wood samples were used as carriers for biofilm formation of a bacterial consortium with the ability to degrade 1,4-dioxane (DX). The delignification treatment of the natural wood resulted in higher porosity, formation of macropores, increase in surface roughness and hydrophilicity of the treated wood pieces. These superior properties of two types of treated carriers (respectively, A and B) compared to the untreated wood resulted in 2.19 ± 0.52- and 2.66 ± 0.23-fold higher growth of biofilm. Moreover, analysis of the fatty acid profiles indicated an increase in proportion of the saturated fatty acids during the biofilm formation, characterising an enhancement in rigidity and hydrophobicity of the biofilms. DX initial concentration of 100 mg/L was completely degraded (detection limit 0.01 mg/L) in 24 and 32 h using the treated A and B woods, while only 25.84 ± 5.95% was removed after 32 h using the untreated wood. However, fitting the DX biodegradation data to the Monod model showed a lower maximum specific growth rate for biofilm (0.0276 ± 0.0018 1/h) versus planktonic (0.0382 ± 0.0024 1/h), because of gradual accumulation of inactive cells in the biofilm. Findings of this study can contribute to the knowledge of biofilm formation regarding the physical/chemical properties of biofilm carriers and be helpful to the ongoing research on bioremediation of DX.
Collapse
Affiliation(s)
- Aryan Samadi
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
| | - Azadeh Kermanshahi Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
| | - Ramon Filipe Beims
- Department of Biochemical and Chemical Engineering, University of Western Ontario, London, Canada
| | - Chunbao Charles Xu
- Department of Biochemical and Chemical Engineering, University of Western Ontario, London, Canada
| |
Collapse
|
3
|
Wang Y, Wu Y, Niu H, Liu Y, Ma Y, Wang X, Li Z, Dong Q. Different cellular fatty acid pattern and gene expression of planktonic and biofilm state Listeria monocytogenes under nutritional stress. Food Res Int 2023; 167:112698. [PMID: 37087265 DOI: 10.1016/j.foodres.2023.112698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023]
Abstract
Listeria monocytogenes is a Gram-positive bacterium frequently involved in food-borne disease outbreaks and is widely distributed in the food-processing environment. This work aims to depict the impact of nutrition deficiency on the survival strategy of L. monocytogenes both in planktonic and biofilm states. In the present study, cell characteristics (autoaggression, hydrophobicity and motility), membrane fatty acid composition of MRL300083 (Lm83) in the forms of planktonic and biofilm-associated cells cultured in TSB-YE and 10-fold dilutions of TSB-YE (DTSB-YE) were investigated. Additionally, the relative expression of related genes were also determined by RT-qPCR. It was observed that cell growth in different bacterial life modes under nutritional stress rendered the cells a distinct phenotype. The higher autoaggression (AAG) and motility of the planktonic cells in DTSB-YE is associated with better biofilm formation. An increased proportion of unsaturated fatty acid/saturated fatty acid (USFA/SFA) indicates more fluidic biophysical properties for cell membranes of L. monocytogenes in planktonic and biofilm cells in DTSB-YE. Biofilm cells produced a higher percentage of USFA and straight fatty acids than the corresponding planktonic cells. An appropriate degree of membrane fluidity is crucial for survival, and alteration of membrane lipids is an essential adaptive response. The adaptation of bacteria to stress is a multifactorial cellular process, the expression of flagella-related genes fliG, fliP, flgE and the two-component chemotactic system cheA/Y genes of planktonic cells in DTSB-YE significantly increased compared to that in TSB-YE (p < 0.05). This study provides new information on the role of the physiological adaptation and gene expression of L. monocytogenes for planktonic and biofilm growth under nutritional stress.
Collapse
Affiliation(s)
- Yuan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Food and Drugs, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
| | - Youzhi Wu
- School of Food and Drugs, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
| | - Hongmei Niu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
4
|
Wang Y, Sun L, Hu L, Wang Z, Wang X, Dong Q. Adhesion and kinetics of biofilm formation and related gene expression of Listeria monocytogenes in response to nutritional stress. Food Res Int 2022; 156:111143. [DOI: 10.1016/j.foodres.2022.111143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 01/08/2023]
|
5
|
Stincone P, Fonseca Veras F, Micalizzi G, Donnarumma D, Vitale Celano G, Petras D, de Angelis M, Mondello L, Brandelli A. Listeria monocytogenes exposed to antimicrobial peptides displays differential regulation of lipids and proteins associated to stress response. Cell Mol Life Sci 2022; 79:263. [PMID: 35482131 PMCID: PMC11071860 DOI: 10.1007/s00018-022-04292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
With the onset of Listeria monocytogenes resistance to the bacteriocin nisin, the search for alternative antimicrobial treatments is of fundamental importance. In this work, we set out to investigate proteins and lipids involved in the resistance mechanisms of L. monocytogenes against the antimicrobial peptides (AMPs) nisin and fengycin. The effect of sub-lethal concentrations of nisin and lipopeptide fengycin secreted by Bacillus velezensis P34 on L. monocytogenes was investigated by mass spectrometry-based lipidomics and proteomics. Both AMPs caused a differential regulation of biofilm formation, confirming the promotion of cell attachment and biofilm assembling after treatment with nisin, whereas growth inhibition was observed after fengycin treatment. Anteiso branched-chain fatty acids were detected in higher amounts in fengycin-treated samples (46.6%) as compared to nisin-treated and control samples (39.4% and 43.4%, respectively). In addition, a higher relative abundance of 30:0, 31:0 and 32:0 phosphatidylglycerol species was detected in fengycin-treated samples. The lipidomics data suggest the inhibition of biofilm formation by the fengycin treatment, while the proteomics data revealed downregulation of important cell wall proteins involved in the building of biofilms, such as the lipoteichoic acid backbone synthesis (Lmo0927) and the flagella-related (Lmo0718) proteins among others. Together, these results provide new insights into the modification of lipid and protein profiles and biofilm formation in L. monocytogenes upon exposure to antimicrobial peptides.
Collapse
Affiliation(s)
- Paolo Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, ICTA-UFRGS, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Flávio Fonseca Veras
- Laboratório de Bioquímica e Microbiologia Aplicada, ICTA-UFRGS, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Giuseppe Micalizzi
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168, Polo AnnunziataMessina, Italy
| | - Danilo Donnarumma
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168, Polo AnnunziataMessina, Italy
| | - Gaetano Vitale Celano
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, Valenzano, 70010, Bari, Italy
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Maria de Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126, Bari, Italy
| | - Luigi Mondello
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168, Polo AnnunziataMessina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, viale Annunziata, 98168, Messina, Italy
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, ICTA-UFRGS, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
6
|
Stolarek P, Bernat P, Szczerbiec D, Różalski A. Phospholipids and Fatty Acids Affect the Colonization of Urological Catheters by Proteus mirabilis. Int J Mol Sci 2021; 22:ijms22168452. [PMID: 34445157 PMCID: PMC8395112 DOI: 10.3390/ijms22168452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Proteus mirabilis-mediated CAUTIs are usually initiated by the adherence of bacteria to a urinary catheter surface. In this paper, three isolates of different origin and exhibiting different adhesion abilities were investigated in search of any changes in lipidome components which might contribute to P. mirabilis adhesion to catheters. Using GC-MS and LC-MS/MS techniques, 21 fatty acids and 27 phospholipids were identified in the examined cells. The comparison of the profiles of phospholipids and fatty acids obtained for catheter-attached cells and planktonic cells of the pathogens indicated C11:0 and PE 37:2 levels as values which could be related to P. mirabilis adhesion to a catheter, as well as cis C16:1, PE 32:0, PE 33:0, PE 38:2, PG 33:1, PG 34:0, PE 30:1, PE 32:1 and PG 30:2 levels as values which could be associated with cell hydrophobicity. Based on DiBAC4 (3) fluorescence intensity and an affinity to p-xylene, it was found that the inner membrane depolarization, as well as strong cell-surface hydrophobicity, were important for P. mirabilis adhesion to a silicone catheter. A generalized polarization of Laurdan showed lower values for P. mirabilis cells attached to the catheter surface than for planktonic cells, suggesting lower packing density of membrane components of the adherent cells compared with tightly packed, stiffened membranes of the planktonic cells. Taken together, these data indicate that high surface hydrophobicity, fluidization and depolarization of P. mirabilis cell membranes enable colonization of a silicone urinary catheter surface.
Collapse
Affiliation(s)
- Paulina Stolarek
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (A.R.)
- Correspondence: ; Tel.: +48-42-635-43-24; Fax: +48-42-665-58-18
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Dominika Szczerbiec
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (A.R.)
| | - Antoni Różalski
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (D.S.); (A.R.)
| |
Collapse
|
7
|
Yuan L, Sadiq FA, Wang N, Yang Z, He G. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Crit Rev Food Sci Nutr 2020; 61:3876-3891. [DOI: 10.1080/10408398.2020.1809345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Faizan A. Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ni Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Rcs Phosphorelay Activation in Cardiolipin-Deficient Escherichia coli Reduces Biofilm Formation. J Bacteriol 2019; 201:JB.00804-18. [PMID: 30782633 DOI: 10.1128/jb.00804-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation is a complex process that requires a number of transcriptional, proteomic, and physiological changes to enable bacterial survival. The lipid membrane presents a barrier to communication between the machinery within bacteria and the physical and chemical features of their extracellular environment, and yet little is known about how the membrane influences biofilm development. We found that depleting the anionic phospholipid cardiolipin reduces biofilm formation in Escherichia coli cells by as much as 50%. The absence of cardiolipin activates the regulation of colanic acid synthesis (Rcs) envelope stress response, which represses the production of flagella, disrupts initial biofilm attachment, and reduces biofilm growth. We demonstrate that a reduction in the concentration of cardiolipin impairs translocation of proteins across the inner membrane, which we hypothesize activates the Rcs pathway through the outer membrane lipoprotein RcsF. Our study demonstrates a molecular connection between the composition of membrane phospholipids and biofilm formation in E. coli and suggests that altering lipid biosynthesis may be a viable approach for altering biofilm formation and possibly other multicellular phenotypes related to bacterial adaptation and survival.IMPORTANCE There is a growing interest in the role of lipid membrane composition in the physiology and adaptation of bacteria. We demonstrate that a reduction in the anionic phospholipid cardiolipin impairs biofilm formation in Escherichia coli cells. Depleting cardiolipin reduced protein translocation across the inner membrane and activated the Rcs envelope stress response. Consequently, cardiolipin depletion produced cells lacking assembled flagella, which impacted their ability to attach to surfaces and seed the earliest stage in biofilm formation. This study provides empirical evidence for the role of anionic phospholipid homeostasis in protein translocation and its effect on biofilm development and highlights modulation of the membrane composition as a potential method of altering bacterial phenotypes related to adaptation and survival.
Collapse
|
9
|
Listeria monocytogenes Response to Propionate Is Differentially Modulated by Anaerobicity. Pathogens 2018; 7:pathogens7030060. [PMID: 29966268 PMCID: PMC6161076 DOI: 10.3390/pathogens7030060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 12/18/2022] Open
Abstract
Propionate is a common food preservative and one of the major fermentation acids in the intestines. Therefore, exposure to propionate is frequent for foodborne pathogens and likely takes place under suboxic conditions. However, it is not clear whether the absence of oxygen affects how pathogens respond to propionate. Here, we investigated how propionate exposure affects Listeria monocytogenes growth and virulence factor production under aerobic or anaerobic conditions and showed that oxygen indeed plays a key role in modulating L. monocytogenes response to propionate. Under aerobic conditions, propionate supplementations had no effect on planktonic growth but resulted in decreased adherent growth. Under anaerobic conditions, propionate supplementations resulted in a pH-dependent inhibition of planktonic growth and increased adherent growth. Cultures grown with propionate accumulated higher levels of acetoin under aerobic conditions but lower levels of ethanol under both aerobic and anaerobic conditions. Metabolic perturbations by propionate were also evident by the increase in straight chain fatty acids. Finally, propionate supplementations resulted in increased listeriolyin O (LLO) production under anaerobic conditions but decreased LLO production under aerobic conditions. These results demonstrate for the first time that the presence or absence of oxygen plays a critical role in shaping L. monocytogenes responses to propionate.
Collapse
|
10
|
Listeria monocytogenes Biofilms in the Wonderland of Food Industry. Pathogens 2017; 6:pathogens6030041. [PMID: 28869552 PMCID: PMC5617998 DOI: 10.3390/pathogens6030041] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 01/31/2023] Open
Abstract
The foodborne pathogen Listeria monocytogenes is a concern in food safety because of its ability to form biofilm and to persist in food industry. In this mini-review, the issue represented by this pathogen and some of the latest efforts performed in order to investigate the composition of biofilms formed by L. monocytogenes are summarized.
Collapse
|
11
|
Hingston P, Chen J, Allen K, Truelstrup Hansen L, Wang S. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes. PLoS One 2017; 12:e0180123. [PMID: 28662112 PMCID: PMC5491136 DOI: 10.1371/journal.pone.0180123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/11/2017] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Listeria monocytogenes continues to pose a challenge in the food industry, where it is known to contaminate ready-to-eat foods and grow during refrigerated storage. Increased knowledge of the cold-stress response of this pathogen will enhance the ability to control it in the food-supply-chain. This study utilized strand-specific RNA sequencing and whole cell fatty acid (FA) profiling to characterize the bacterium's cold stress response. RNA and FAs were extracted from a cold-tolerant strain at five time points between early lag phase and late stationary-phase, both at 4°C and 20°C. Overall, more genes (1.3×) were suppressed than induced at 4°C. Late stationary-phase cells exhibited the greatest number (n = 1,431) and magnitude (>1,000-fold) of differentially expressed genes (>2-fold, p<0.05) in response to cold. A core set of 22 genes was upregulated at all growth phases, including nine genes required for branched-chain fatty acid (BCFA) synthesis, the osmolyte transporter genes opuCBCD, and the internalin A and D genes. Genes suppressed at 4°C were largely associated with cobalamin (B12) biosynthesis or the production/export of cell wall components. Antisense transcription accounted for up to 1.6% of total mapped reads with higher levels (2.5×) observed at 4°C than 20°C. The greatest number of upregulated antisense transcripts at 4°C occurred in early lag phase, however, at both temperatures, antisense expression levels were highest in late stationary-phase cells. Cold-induced FA membrane changes included a 15% increase in the proportion of BCFAs and a 15% transient increase in unsaturated FAs between lag and exponential phase. These increases probably reduced the membrane phase transition temperature until optimal levels of BCFAs could be produced. Collectively, this research provides new information regarding cold-induced membrane composition changes in L. monocytogenes, the growth-phase dependency of its cold-stress regulon, and the active roles of antisense transcripts in regulating its cold stress response.
Collapse
Affiliation(s)
- Patricia Hingston
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Chen
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Allen
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Siyun Wang
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Dubois-Brissonnet F, Trotier E, Briandet R. The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids. Front Microbiol 2016; 7:1673. [PMID: 27840623 PMCID: PMC5083788 DOI: 10.3389/fmicb.2016.01673] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/06/2016] [Indexed: 11/13/2022] Open
Abstract
Biofilm formation on contact surfaces contributes to persistence of foodborne pathogens all along the food and feed chain. The specific physiological features of bacterial cells embedded in biofilms contribute to their high tolerance to environmental stresses, including the action of antimicrobial compounds. As membrane lipid adaptation is a vital facet of bacterial response when cells are submitted to harsh or unstable conditions, we focused here on membrane fatty acid composition of biofilm cells as compared to their free-growing counterparts. Pathogenic bacteria (Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium) were cultivated in planktonic or biofilm states and membrane fatty acid analyses were performed on whole cells in both conditions. The percentage of saturated fatty acids increases in biofilm cells in all cases, with a concomitant decrease of branched-chain fatty acids for Gram-positive bacteria, or with a decrease in the sum of other fatty acids for Gram-negative bacteria. We propose that increased membrane saturation in biofilm cells is an adaptive stress response that allows bacteria to limit exchanges, save energy, and survive. Reprogramming of membrane fluidity in biofilm cells might explain specific biofilm behavior including bacterial recalcitrance to biocide action.
Collapse
Affiliation(s)
- Florence Dubois-Brissonnet
- Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | | | | |
Collapse
|
13
|
Serrazanetti DI, Patrignani F, Russo A, Vannini L, Siroli L, Gardini F, Lanciotti R. Cell membrane fatty acid changes and desaturase expression of Saccharomyces bayanus exposed to high pressure homogenization in relation to the supplementation of exogenous unsaturated fatty acids. Front Microbiol 2015; 6:1105. [PMID: 26528258 PMCID: PMC4600958 DOI: 10.3389/fmicb.2015.01105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/25/2015] [Indexed: 11/13/2022] Open
Abstract
Aims: The aim of this work was to study the responses of Saccharomyces bayanus cells exposed to sub-lethal high-pressure homogenization (HPH) and determine whether the plasmatic membrane can sense HPH in the presence, or absence, of exogenous unsaturated fatty acids (UFAs) in the growth medium. Methods and Results: High-pressure homogenization damaged and caused the collapse of cell walls and membranes of a portion of cells; however, HPH did not significantly affect S. bayanus cell viability (less than 0.3 Log CFU ml-1). HPH strongly affected the membrane fatty acid (FA) composition by increasing the percentage of total UFA when compared with saturated fatty acids. The gene expression showed that the transcription of OLE1, ERG3, and ERG11 increased after HPH. The presence of exogenous UFA abolished HPH-induced effects on the OLE1 and ERG3 genes, increased the percentage of membrane lipids and decreased the expression of OLE1 and ERG3 within 30 min of treatment. Conclusion: The results suggest a key role for UFA in the microbial cell response to sub-lethal stress. In addition, these data provide insight into the molecular basis of the response of S. bayanus to this innovative technology. Significance and Impact of the Study: Elucidation of the mechanism of action for sub-lethal HPH will enable the utilization of this technology to modulate the starter performance at the industrial scale.
Collapse
Affiliation(s)
- Diana I Serrazanetti
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di Bologna Cesena, Italy
| | - Francesca Patrignani
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| | - Alessandra Russo
- Servizio Sanitario Regionale, Azienda Unità Sanitaria Locale di Imola Imola, Italy
| | - Lucia Vannini
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di Bologna Cesena, Italy ; Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| | - Lorenzo Siroli
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| | - Fausto Gardini
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di Bologna Cesena, Italy ; Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| | - Rosalba Lanciotti
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare, Università degli Studi di Bologna Cesena, Italy ; Dipartimento di Scienze e Tecnologie Agro-alimentari, Università degli Studi di Bologna Cesena, Italy
| |
Collapse
|
14
|
Doijad SP, Barbuddhe SB, Garg S, Poharkar KV, Kalorey DR, Kurkure NV, Rawool DB, Chakraborty T. Biofilm-Forming Abilities of Listeria monocytogenes Serotypes Isolated from Different Sources. PLoS One 2015; 10:e0137046. [PMID: 26360831 PMCID: PMC4567129 DOI: 10.1371/journal.pone.0137046] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/12/2015] [Indexed: 11/21/2022] Open
Abstract
A total of 98 previously characterized and serotyped L. monocytogenes strains, comprising 32 of 1/2a; 20 of 1/2b and 46 of 4b serotype, from clinical and food sources were studied for their capability to form a biofilm. The microtiter plate assay revealed 62 (63.26%) strains as weak, 27 (27.55%) strains as moderate, and 9 (9.18%) strains as strong biofilm formers. Among the strong biofilm formers, 6 strains were of serotype 1/2a and 3 strains were of serotype 1/2b. None of the strain from 4b serotype exhibited strong biofilm formation. No firm correlation (p = 0.015) was noticed between any serotype and respective biofilm formation ability. Electron microscopic studies showed that strong biofilm forming isolates could synthesize a biofilm within 24 h on surfaces important in food industries such as stainless steel, ceramic tiles, high-density polyethylene plastics, polyvinyl chloride pipes, and glass. Cell enumeration of strong, moderate, and weak biofilm was performed to determine if the number of cells correlated with the biofilm-forming capabilities of the isolates. Strong, moderate, and weak biofilm showed 570±127× 103 cells/cm2, 33±26× 103 cells/cm2, 5±3× 103 cells/cm2, respectively, indicating that the number of cells was directly proportional to the strength of the biofilm. The hydrophobicity index (HI) analysis revealed higher hydrophobicity with an increased biofilm formation. Fatty acid methyl esterase analysis revealed the amount of certain fatty acids such as iso-C15:0, anteiso-C15:0, and anteiso-C17:0 fatty acids correlated with the biofilm-forming capability of L. monocytogenes. This study showed that different strains of L. monocytogenes form biofilm of different intensities which did not completely correlate with their serotype; however, it correlated with the number of cells, hydrophobicity, and amount of certain fatty acids.
Collapse
Affiliation(s)
| | - Sukhadeo B. Barbuddhe
- ICAR Research Complex for Goa, Old Goa 403 402, India
- National Institute of Biotic Stress Management, IGKV Campus, Krishak Nagar, Raipur, Chhattisgarh, 492012, India
- * E-mail: (SBB); (TC)
| | - Sandeep Garg
- Department of Microbiology, Goa University, Taleigaon Plateau, Goa 403 206, India
| | | | - Dewanand R. Kalorey
- Department of Microbiology and Animal Biotechnology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur 440006, India
| | - Nitin V. Kurkure
- Department of Microbiology and Animal Biotechnology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur 440006, India
| | - Deepak B. Rawool
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
- * E-mail: (SBB); (TC)
| |
Collapse
|
15
|
Zhang Y, Carpenter CE, Broadbent JR, Luo X. Influence of habituation to inorganic and organic acid conditions on the cytoplasmic membrane composition of Listeria monocytogenes. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Al-Beloshei NE, Al-Awadhi H, Al-Khalaf RA, Afzal M. A comparative study of fatty acid profile and formation of biofilm inGeobacillus gargensisexposed to variable abiotic stress. Can J Microbiol 2015; 61:48-59. [DOI: 10.1139/cjm-2014-0615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding bacterial fatty acid (FA) profile has a great taxonomic significance as well as clinical importance for diagnosis issues. Both the composition and nature of membrane FAs change under different nutritional, biotic and (or) abiotic stresses, and environmental stress. Bacteria produce both odd-carbon as well as branched-chain fatty acids (BCFAs). This study was designed to examine the effect of abiotic pressure, including salinity, temperature, pH, and oxinic stress on the growth, development, and FA profile in thermophilic Geobacillus gargensis. Under these stresses, 3 parametric ratios, 2-methyl fatty acids/3-methyl fatty acids (iso-/anteiso-FAs), BCFAs/straight-chain saturated fatty acids (SCSFA), and SCSFAs/straight-chain unsaturated fatty acids (SCUFA), in addition to total lipids affected by variable stresses were measured. Our results indicate that the ratio of total iso-/anteiso-FAs increased at the acidic pH range of 4.1–5.2 and decreased with increasing pH. The reverse was true for salt stress when iso-/anteiso-FAs ratio increased with salt concentration. The BCFAs/SCSFAs and SCSFAs/SCUFAs ratios increased at neutral and alkaline pH and high salt concentration, reduced incubation time, and comparatively high temperature (55–65 °C) of the growth medium. The bacterial total lipid percentage deceased with increasing salt concentration, incubation period, but it increased with temperature. The formation of extracellular polymeric substances was observed under all stress conditions and with the addition of sodium dodecyl sulfate (2 and 5 mmol/L) to the growth medium. The membrane phospholipid composition of the bacterium was analyzed by thin-layer chromatography.
Collapse
Affiliation(s)
| | - Husain Al-Awadhi
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait
| | - Rania A. Al-Khalaf
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait
| | - Mohammad Afzal
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait
| |
Collapse
|
17
|
Abdallah M, Benoliel C, Drider D, Dhulster P, Chihib NE. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch Microbiol 2014; 196:453-72. [PMID: 24744186 DOI: 10.1007/s00203-014-0983-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 11/30/2022]
Abstract
The biofilm formation on abiotic surfaces in food and medical sectors constitutes a great public health concerns. In fact, biofilms present a persistent source for pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which lead to severe infections such as foodborne and nosocomial infections. Such biofilms are also a source of material deterioration and failure. The environmental conditions, commonly met in food and medical area, seem also to enhance the biofilm formation and their resistance to disinfectant agents. In this regard, this review highlights the effect of environmental conditions on bacterial adhesion and biofilm formation on abiotic surfaces in the context of food and medical environment. It also describes the current and emergent strategies used to study the biofilm formation and its eradication. The mechanisms of biofilm resistance to commercialized disinfectants are also discussed, since this phenomenon remains unclear to date.
Collapse
Affiliation(s)
- Marwan Abdallah
- Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM), IUT A/Polytech'Lille, Université de Lille1-Science et Technologies, Avenue Paul Langevin, 59655, Villeneuve d'Ascq Cedex, France
| | | | | | | | | |
Collapse
|
18
|
Skovager A, Larsen MH, Castro-Mejia JL, Hecker M, Albrecht D, Gerth U, Arneborg N, Ingmer H. Initial adhesion of Listeria monocytogenes to fine polished stainless steel under flow conditions is determined by prior growth conditions. Int J Food Microbiol 2013; 165:35-42. [DOI: 10.1016/j.ijfoodmicro.2013.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
|
19
|
Wang G, Huang D, Qi H, Wen J, Jia X, Chen Y. Rational medium optimization based on comparative metabolic profiling analysis to improve fumaric acid production. BIORESOURCE TECHNOLOGY 2013; 137:1-8. [PMID: 23570778 DOI: 10.1016/j.biortech.2013.03.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 05/28/2023]
Abstract
To rationally guide fumaric acid production improvement, metabolic profiling approach was performed to analyze metabolite changes of Rhizopus oryzae FM19 under different fermentation conditions. A correlation between the metabolic profiling and fumaric acid production was revealed by principal component analysis as well as partial least squares. Citric acid, oxaloacetic acid, 2-oxoglutarate, lactic acid, proline, alanine, valine, leucine were identified to be mainly responsible for the metabolism difference, which were involved in the Embden-Meyerhof-Parnas, tricarboxylic acid cycle, amino acid metabolism and fatty acid metabolism. Through the further analysis of metabolites changes together with the above pathways, exogenous addition strategies were developed, which resulted in 14% increase of fumaric acid (up to 56.5 g/L) and less by-products. These results demonstrated that metabolic profiling analysis could be successfully applied to the rational guidance of medium optimization and the productivity improvement of value-added compounds.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
20
|
Villa F, Remelli W, Forlani F, Vitali A, Cappitelli F. Altered expression level of Escherichia coli proteins in response to treatment with the antifouling agent zosteric acid sodium salt. Environ Microbiol 2011; 14:1753-61. [PMID: 22176949 DOI: 10.1111/j.1462-2920.2011.02678.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zosteric acid sodium salt is a powerful antifouling agent. However, the mode of its antifouling action has not yet been fully elucidated. Whole cell proteome of Escherichia coli was analysed to study the different protein patterns expressed by the surface-exposed planktonic cells without and with sublethal concentrations of the zosteric acid sodium salt. Proteomic analysis revealed that at least 27 proteins showed a significant (19 upregulated and 8 downregulated, P < 0.001) altered expression level in response to the antifoulant. The proteomic signatures of zosteric acid sodium salt-treated cells are characterized by stress-associated (e.g. AhpC, OsmC, SodB, GroES, IscU, DnaK), motility-related (FliC), quorum-sensing-associated (LuxS) and metabolism/biosynthesis-related (e.g. PptA, AroA, FabD, FabB, GapA) proteins. Consistent with the overexpression of LuxS enzyme, the antifouling agent increased autoinducer-2 (AI-2) concentration by twofold. Moreover, treated cells experienced a statistically significant but modest increase of reactive oxygen species (+ 23%), tryptophanase (1.2-fold) and indole (1.2-fold) synthesis. Overall, our data suggest that zosteric acid sodium salt acts as environmental cue leading to global stress on E. coli cells, which favours the expression of various protective proteins, the AI-2 production and the synthesis of flagella, to escape from adverse conditions.
Collapse
Affiliation(s)
- Federica Villa
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, via Celoria 2, Milan, Italy
| | | | | | | | | |
Collapse
|
21
|
Acid stress-mediated metabolic shift in Lactobacillus sanfranciscensis LSCE1. Appl Environ Microbiol 2011; 77:2656-66. [PMID: 21335381 DOI: 10.1128/aem.01826-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus sanfranciscensis LSCE1 was selected as a target organism originating from recurrently refreshed sourdough to study the metabolic rerouting associated with the acid stress exposure during sourdough fermentation. In particular, the acid stress induced a metabolic shift toward overproduction of 3-methylbutanoic and 2-methylbutanoic acids accompanied by reduced sugar consumption and primary carbohydrate metabolite production. The fate of labeled leucine, the role of different nutrients and precursors, and the expression of the genes involved in branched-chain amino acid (BCAA) catabolism were evaluated at pH 3.6 and 5.8. The novel application of the program XCMS to the solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) data allowed accurate separation and quantification of 2-methylbutanoic and 3-methylbutanoic acids, generally reported as a cumulative datum. The metabolites coming from BCAA catabolism increased up to seven times under acid stress. The gene expression analysis confirmed that some genes associated with BCAA catabolism were overexpressed under acid conditions. The experiment with labeled leucine showed that 2-methylbutanoic acid originated also from leucine. While the overproduction of 3-methylbutanoic acid under acid stress can be attributed to the need to maintain redox balance, the rationale for the production of 2-methylbutanoic acid from leucine can be found in a newly proposed biosynthesis pathway leading to 2-methylbutanoic acid and 3 mol of ATP per mol of leucine. Leucine catabolism to 3-methylbutanoic and 2-methylbutanoic acids suggests that the switch from sugar to amino acid catabolism supports growth in L. sanfranciscensis in restricted environments such as sourdough characterized by acid stress and recurrent carbon starvation.
Collapse
|
22
|
Chao J, Wolfaardt GM, Arts MT. Characterization of Pseudomonas aeruginosa fatty acid profiles in biofilms and batch planktonic cultures. Can J Microbiol 2010; 56:1028-39. [DOI: 10.1139/w10-093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The fatty acid composition of Pseudomonas aeruginosa PAO1 was compared between biofilm and batch planktonic cultures. Strain PAO1 biofilms were able to maintain a consistent fatty acid profile for up to 6 days, whereas strain PAO1 batch planktonic cultures showed a gradual loss of cis-monounsaturated fatty acids over 4 days. Biofilms exhibited a greater proportion of hydroxy fatty acids but a lower proportion of both cyclopropane fatty acids and saturated fatty acids (SAFAs). SAFAs with ≥16 carbons, in particular, decreased in biofilms when compared with that in batch planktonic cultures. A reduced proportion of SAFAs and a decline in overall fatty acid chain length indicate more fluidic biophysical properties for cell membranes of P. aeruginosa in biofilms. Separating the biofilms into 2 partitions and comparing their fatty acid compositions revealed additional trends that were not observed in the whole biofilm: the shear-nonremovable layer consistently showed greater proportions of hydroxy fatty acid than the bulk liquid + shear-removable portion of the biofilm. The shear-nonremovable portion demonstrated a relatively immediate decline in the proportion of monounsaturated fatty acids between days 2 and 4; which was offset by an increase in the proportion of cyclopropane fatty acids, specifically 19:0cyc(11,12). Simultaneously, the shear-removable portion of the biofilm showed an increase in the proportion of trans-monounsaturated fatty acids and cyclopropane fatty acids.
Collapse
Affiliation(s)
- Jerry Chao
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Aquatic Ecosystem Management Research Division, National Water Research Institute – Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6, Canada
| | - Gideon M. Wolfaardt
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Aquatic Ecosystem Management Research Division, National Water Research Institute – Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6, Canada
| | - Michael T. Arts
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Aquatic Ecosystem Management Research Division, National Water Research Institute – Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6, Canada
| |
Collapse
|
23
|
Saá Ibusquiza P, Herrera JJR, Cabo ML. Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes. Food Microbiol 2010; 28:418-25. [PMID: 21356446 DOI: 10.1016/j.fm.2010.09.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/10/2010] [Accepted: 09/11/2010] [Indexed: 10/18/2022]
Abstract
Increase of resistance to the application of benzalkonium chloride (BAC), peracetic acid (PA) and nisin during biofilm formation at 25 °C by three strains of Listeria monocytogenes (CECT 911, CECT 4032, CECT 5873 and BAC-adapted CECT 5873) in different scenarios was compared. For this purpose, resistance after 4 and 11-days of biofilm formation was quantified in terms of lethal dose 90% values (LD(90)), determined according with a dose-response logistic mathematical model. Microscopic analyses after 4 and 11-days of L. monocytogenes biofilm formation were also carried out. Results demonstrated a relation between the microscopic structure and the resistance to the assayed biocides in matured biofilms. The worst cases being biofilms formed by the strain 4032 (in both stainless steel and polypropylene), which showed a complex "cloud-type" structure that correlates with the highest resistance of this strain against the three biocides during biofilm maturation. However, that increase in resistance and complexity appeared not to be dependent on initial bacterial adherence, thus indicating mature biofilms rather than planctonic cells or early-stage biofilms must be considered when disinfection protocols have to be optimized. PA seemed to be the most effective of the three disinfectants used for biofilms. We hypothesized both its high oxidizing capacity and low molecular size could suppose an advantage for its penetration inside the biofilm. We also demonstrated that organic material counteract with the biocides, thus indicating the importance of improving cleaning protocols. Finally, by comparing strains 5873 and 5873 adapted to BAC, several adaptative cross-responses between BAC and nisin or peracetic acid were identified.
Collapse
Affiliation(s)
- P Saá Ibusquiza
- Instituto de Investigaciones Marinas (C.S.I.C.). Eduardo Cabello, 6. 36208 Vigo, (Pontevedra), Spain
| | | | | |
Collapse
|
24
|
Benamara H, Rihouey C, Jouenne T, Alexandre S. Impact of the biofilm mode of growth on the inner membrane phospholipid composition and lipid domains in Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:98-105. [PMID: 20849811 DOI: 10.1016/j.bbamem.2010.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 11/30/2022]
Abstract
Many studies using genetic and proteomic approaches have revealed phenotypic differences between planktonic and sessile bacteria but the mechanisms of biofilm formation and the switch between the two growth modes are not well understood yet. In this study, we focused on inner membrane lipidome modifications when Pseudomonas aeruginosa cells were grown as biofilm. Lipid analyses were performed by Electrospray Ionization Mass Spectrometry. Results showed a drastic decrease of the uneven-numbered chain phospholipids and a slight increase of long chain PEs in sessile organisms as compared with planktonic counterparts, suggesting a better lipid stability in the bilayer and a decrease in membrane fluidity. The impact of sessile growth on lipid domains was then investigated by Brewster Angle Microscopy (BAM) and Atomic Force Microscopy (AFM). Observations showed that inner membrane lipids of P. aeruginosa formed domains when the pressure was close to physiological conditions and that these domains were larger for lipids extracted from biofilm bacteria. This is coherent with the mass spectrometry analyses.
Collapse
Affiliation(s)
- Hayette Benamara
- PBS laboratory, UMR 6270, FR 3038, CNRS, Proteomic Platform of the IFRMP23, University of Rouen, 76821 Mont-Saint-Aignan cedex, France
| | | | | | | |
Collapse
|
25
|
Mastronicolis SK, Berberi A, Diakogiannis I, Petrova E, Kiaki I, Baltzi T, Xenikakis P. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH. Antonie van Leeuwenhoek 2010; 98:307-16. [PMID: 20379849 PMCID: PMC2935972 DOI: 10.1007/s10482-010-9439-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 03/29/2010] [Indexed: 10/30/2022]
Abstract
This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.
Collapse
Affiliation(s)
- Sofia K Mastronicolis
- Food Chemistry Laboratory, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
26
|
Shin MH, Lee DY, Skogerson K, Wohlgemuth G, Choi IG, Fiehn O, Kim KH. Global metabolic profiling of plant cell wall polysaccharide degradation by Saccharophagus degradans. Biotechnol Bioeng 2010; 105:477-88. [PMID: 19806675 DOI: 10.1002/bit.22557] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Plant cell wall polysaccharides can be used as the main feedstock for the production of biofuels. Saccharophagus degradans 2-40 is considered to be a potent system for the production of sugars from plant biomass due to its high capability to degrade many complex polysaccharides. To understand the degradation metabolism of plant cell wall polysaccharides by S. degradans, the cell growth, enzyme activity profiles, and the metabolite profiles were analyzed by gas chromatography-time of flight mass spectrometry using different carbon sources including cellulose, xylan, glucose, and xylose. The specific activity of cellulase was only found to be significantly higher when cellulose was used as the sole carbon source, but the xylanase activity increased when xylan, xylose, or cellulose was used as the carbon source. In addition, principal component analysis of 98 identified metabolites in S. degradans revealed four distinct groups that differed based on the carbon source used. Furthermore, metabolite profiling showed that the use of cellulose or xylan as polysaccharides led to increased abundances of fatty acids, nucleotides and glucuronic acid compared to the use of glucose or xylose. Finally, intermediates in the pentose phosphate pathway seemed to be up-regulated on xylose or xylan when compared to those on glucose or cellulose. Such metabolic responses of S. degradans under plant cell wall polysaccharides imply that its metabolic system is transformed to more efficiently degrade polysaccharides and conserve energy. This study demonstrates that the gas chromatography-time of flight mass spectrometry-based global metabolomics are useful for understanding microbial metabolism and evaluating its fermentation characteristics.
Collapse
|
27
|
Gianotti A, Iucci L, Guerzoni ME, Lanciotti R. Effect of acidic conditions on fatty acid composition and membrane fluidity ofEscherichia coli strains isolated from Crescenza cheese. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175152] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
Begley M, Kerr C, Hill C. Exposure to bile influences biofilm formation by Listeria monocytogenes. Gut Pathog 2009; 1:11. [PMID: 19476630 PMCID: PMC2693109 DOI: 10.1186/1757-4749-1-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 05/28/2009] [Indexed: 01/10/2023] Open
Abstract
In the present study we demonstrate that the initial attachment of Listeria monocytogenes cells to plastic surfaces was significantly increased by growth in the presence of bile. Improved biofilm formation was confirmed by crystal violet staining, microscopy and bioluminescence detection of a luciferase-tagged strain. Enhanced biofilm formation in response to bile may influence the ability of L. monocytogenes to form biofilms in vivo during infection and may contribute to survival of this important pathogen in the human gastrointestinal tract and gallbladder.
Collapse
Affiliation(s)
- Máire Begley
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | | | | |
Collapse
|