1
|
Shani N, Oberhaensli S, Berthoud H, Schmidt RS, Bachmann HP. Antimicrobial Susceptibility of Lactobacillus delbrueckii subsp. lactis from Milk Products and Other Habitats. Foods 2021; 10:foods10123145. [PMID: 34945696 PMCID: PMC8701367 DOI: 10.3390/foods10123145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
As components of many cheese starter cultures, strains of Lactobacillus delbrueckii subsp. lactis (LDL) must be tested for their antimicrobial susceptibility to avoid the potential horizontal transfer of antibiotic resistance (ABR) determinants in the human body or in the environment. To this end, a phenotypic test, as well as a screening for antibiotic resistance genes (ARGs) in genome sequences, is commonly performed. Historically, microbiological cutoffs (MCs), which are used to classify strains as either 'sensitive' or 'resistant' based on the minimal inhibitory concentrations (MICs) of a range of clinically-relevant antibiotics, have been defined for the whole group of the obligate homofermentative lactobacilli, which includes LDL among many other species. This often leads to inaccuracies in the appreciation of the ABR status of tested LDL strains and to false positive results. To define more accurate MCs for LDL, we analyzed the MIC profiles of strains originating from various habitats by using the broth microdilution method. These strains' genomes were sequenced and used to complement our analysis involving a search for ARGs, as well as to assess the phylogenetic proximity between strains. Of LDL strains, 52.1% displayed MICs that were higher than the defined MCs for kanamycin, 9.9% for chloramphenicol, and 5.6% for tetracycline, but no ARG was conclusively detected. On the other hand, all strains displayed MICs below the defined MCs for ampicillin, gentamycin, erythromycin, and clindamycin. Considering our results, we propose the adaptation of the MCs for six of the tested clinically-relevant antibiotics to improve the accuracy of phenotypic antibiotic testing.
Collapse
Affiliation(s)
- Noam Shani
- Competence Division Methods Development and Analytics, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland;
- Correspondence:
| | - Simone Oberhaensli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland;
| | - Hélène Berthoud
- Competence Division Methods Development and Analytics, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland;
| | - Remo S. Schmidt
- Research Division Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; (R.S.S.); (H.-P.B.)
| | - Hans-Peter Bachmann
- Research Division Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; (R.S.S.); (H.-P.B.)
| |
Collapse
|
2
|
Giraffa G. The Microbiota of Grana Padano Cheese. A Review. Foods 2021; 10:2632. [PMID: 34828913 PMCID: PMC8621370 DOI: 10.3390/foods10112632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Grana Padano (GP) is the most appreciated and marketed cheese with Protected Designation of Origin in the world. The use of raw milk, the addition of undefined cultures (defined as 'sieroinnesto naturale'), the peculiar manufacturing proces, and the long ripening make the cheese microbiota play a decisive role in defining the quality and the organoleptic properties of the product. The knowledge on the microbial diversity associated with GP has been the subject, in recent years, of several studies aimed at understanding its composition and characteristics in order, on the one hand, to improve its technological performances and, on the other hand, to indirectly enhance the nutritional quality of the product. This review aims to briefly illustrate the main available knowledge on the composition and properties of the GP microbiota, inferred from dozens of studies carried out by both classical microbiology techniques and metagenomic analysis. The paper will essentially, but not exclusively, be focused on the lactic acid bacteria (LAB) derived from starter (SLAB) and the non-starter bacteria, both lactic (NSLAB) and non-lactic, of milk origin.
Collapse
Affiliation(s)
- Giorgio Giraffa
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| |
Collapse
|
3
|
Lakhlifi T, Es-Sbata I, Eloirdi S, El Aamri L, Zouhair R, Belhaj A. Biopreservation of yogurt against fungal spoilage using cell-free supernatant of Lactiplantibacillus pentosus 22B and characterization of its antifungal compounds. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1980004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tarik Lakhlifi
- Microbial Ecology, Cellular Interactions and Environment Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Ikram Es-Sbata
- Laboratory of Plant Biotechnology and Molecular Biology, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Samia Eloirdi
- Microbial Ecology, Cellular Interactions and Environment Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Lamya El Aamri
- Laboratory of Plant Biotechnology and Molecular Biology, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Rachid Zouhair
- Laboratory of Plant Biotechnology and Molecular Biology, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| | - Abdelhaq Belhaj
- Microbial Ecology, Cellular Interactions and Environment Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
| |
Collapse
|
4
|
Houngbédji M, Padonou SW, Parkouda C, Johansen PG, Hounsou M, Agbobatinkpo BP, Sawadogo-Lingani H, Jespersen L, Hounhouigan DJ. Multifunctional properties and safety evaluation of lactic acid bacteria and yeasts associated with fermented cereal doughs. World J Microbiol Biotechnol 2021; 37:34. [PMID: 33475896 DOI: 10.1007/s11274-021-02994-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/01/2021] [Indexed: 11/25/2022]
Abstract
Spontaneous cereal fermentations involve diverse lactic acid bacteria (LAB) and yeasts which may include multifunctional and safe or unsafe strains. This study assessed acidification ability, safety, antifungal activity and free amino acids release ability of LAB and yeasts previously isolated from spontaneously fermented cereal doughs in Benin. Fourteen LAB and thirteen yeast strains were studied in liquid media and/or in a model cereal dough prepared in laboratory conditions. Antifungal activity was assessed against Candida glabrata in liquid medium. Amino acids were determined by pre-column derivatization and separation with reversed-phase HPLC. Antimicrobial susceptibility was analysed by minimum inhibitory concentration determination. The acidification ability was higher for LAB compared to yeast strains. All LAB strains retarded the growth of C. glabrata Cg1 with the highest inhibition recorded for Weissella confusa Wc1 and Wc2. The highest free amino acid content was found in the doughs fermented with Pichia kudriavzevii Pk2 and Pk3. All the LAB strains were susceptible to ampicillin, chloramphenicol, erythromycin, but displayed phenotypic resistance to kanamycin, streptomycin and tetracycline. Positive PCR amplicon of resistance genes were detected in the following cases: 2 LAB strains were positive for kanamycin (aph(3)III), 5 strains were positive for streptomycin (aadA and/or strA and/or strB) and 3 strains were positive for tetracycline (tet (L) and/or tet (M)). For yeasts, most of the P. kudriavzevii strains were resistant to amphotericin B, fluconazole and itraconazole opposite to K. marxianus and Saccharomyces cerevisiae strains which were susceptible. The results obtained are valuable for selecting safe and multifunctional strains for cereal fermentation in West Africa.
Collapse
Affiliation(s)
- Marcel Houngbédji
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin.
| | - S Wilfrid Padonou
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin.,ESTCTPA, Université Nationale d'Agriculture, 01, BP 55, Porto-Novo, Benin
| | - Charles Parkouda
- Département Technologie Alimentaire/IRSAT/CNRST, 03, BP 7047, Ouagadougou 03, Burkina Faso
| | - Pernille Greve Johansen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C., Denmark
| | - Mathias Hounsou
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin
| | - B Pélagie Agbobatinkpo
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin
| | - Hagretou Sawadogo-Lingani
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin.,Département Technologie Alimentaire/IRSAT/CNRST, 03, BP 7047, Ouagadougou 03, Burkina Faso
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C., Denmark
| | - D Joseph Hounhouigan
- Laboratoire de Sciences des Aliments, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03, BP 2819, Jéricho, Cotonou, Benin
| |
Collapse
|
5
|
Comparative evaluation of cheese whey microbial composition from four Italian cheese factories by viable counts and 16S rRNA gene amplicon sequencing. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
6
|
Scornec H, Palud A, Pédron T, Wheeler R, Petitgonnet C, Boneca IG, Cavin JF, Sansonetti PJ, Licandro H. Study of the cwaRS-ldcA Operon Coding a Two-Component System and a Putative L,D-Carboxypeptidase in Lactobacillus paracasei. Front Microbiol 2020; 11:156. [PMID: 32194510 PMCID: PMC7062640 DOI: 10.3389/fmicb.2020.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/22/2020] [Indexed: 11/22/2022] Open
Abstract
The cell surface is the primary recognition site between the bacterium and the host. An operon of three genes, LSEI_0219 (cwaR), LSEI_0220 (cwaS), and LSEI_0221 (ldcA), has been previously identified as required for the establishment of Lactobacillus paracasei in the gut. The genes cwaR and cwaS encode a predicted two-component system (TCS) and ldcA a predicted D-alanyl-D-alanine carboxypeptidase which is a peptidoglycan (PG) biosynthesis enzyme. We explored the functionality and the physiological role of these three genes, particularly their impact on the bacterial cell wall architecture and on the bacterial adaptation to environmental perturbations in the gut. The functionality of CwaS/R proteins as a TCS has been demonstrated by biochemical analysis. It is involved in the transcriptional regulation of several genes of the PG biosynthesis. Analysis of the muropeptides of PG in mutants allowed us to re-annotate LSEI_0221 as a putative L,D-carboxypeptidase (LdcA). The absence of this protein coincided with a decrease of two surface antigens: LSEI_0020, corresponding to p40 or msp2 whose implication in the host epithelial homeostasis has been recently studied, and LSEI_2029 which has never been functionally characterized. The inactivation of each of these three genes induces susceptibility to antimicrobial peptides (hBD1, hBD2, and CCL20), which could be the main cause of the gut establishment deficiency. Thus, this operon is necessary for the presence of two surface antigens and for a suitable cell wall architecture.
Collapse
Affiliation(s)
- Hélène Scornec
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Aurore Palud
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Thierry Pédron
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Unité INSERM, Institut Pasteur, Paris, France
| | - Richard Wheeler
- Unité de Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Paris, France
- Avenir Group, INSERM, Paris, France
| | - Clément Petitgonnet
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Ivo Gomperts Boneca
- Unité de Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Paris, France
- Avenir Group, INSERM, Paris, France
| | - Jean-François Cavin
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Unité INSERM, Institut Pasteur, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Hélène Licandro
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
7
|
Capozzi V, Fragasso M, Russo P. Microbiological Safety and the Management of Microbial Resources in Artisanal Foods and Beverages: The Need for a Transdisciplinary Assessment to Conciliate Actual Trends and Risks Avoidance. Microorganisms 2020; 8:E306. [PMID: 32098373 PMCID: PMC7074853 DOI: 10.3390/microorganisms8020306] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
Current social and environmental trends explain the rising popularity of artisanal fermented foods and beverages. In contrast with their marketing success, several studies underline a lack of regulations necessary to claim differences occurred from the farm to the fork and to certify high quality and safety standards. Microbial-based fermentative processes represent the crucial phase in the production of fermented foods and beverages. Nevertheless, what are the effects of the application of the "artisanal" category to the management of food fermentations? This opinion paper is built up on this issue by analyzing microbial aspects, instances of innovation, safety issues, and possible solutions. Evidence indicates: (i) a global curiosity to exploit food fermentations as drivers of innovation in artisanal contexts and (ii) an increasing interest of the artisanal producers into management of fermentation that relies on native microbial consortia. Unfortunately, this kind of revamp of "artisanal food microbiology," rather than re-establishing artisanal content, can restore the scarce hygienic conditions that characterized underdeveloped food systems. We highlight that in the scientific literature, it is possible to underline existing approaches that, surpassing the dichotomy between relying on spontaneous fermentation and the use of commercial starter cultures, depict a "third way" to conjugate interest in enhancing the artisanal attributes with the need for correct management of microbial-related risks in the final products.
Collapse
Affiliation(s)
- Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Mariagiovanna Fragasso
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.F.); (P.R.)
| | - Pasquale Russo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.F.); (P.R.)
| |
Collapse
|
8
|
Influence of the early bacterial biofilms developed on vats made with seven wood types on PDO Vastedda della valle del Belìce cheese characteristics. Int J Food Microbiol 2019; 291:91-103. [DOI: 10.1016/j.ijfoodmicro.2018.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 11/24/2022]
|
9
|
Sha SP, Suryavanshi MV, Jani K, Sharma A, Shouche Y, Tamang JP. Diversity of Yeasts and Molds by Culture-Dependent and Culture-Independent Methods for Mycobiome Surveillance of Traditionally Prepared Dried Starters for the Production of Indian Alcoholic Beverages. Front Microbiol 2018; 9:2237. [PMID: 30319566 PMCID: PMC6169615 DOI: 10.3389/fmicb.2018.02237] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Marcha, thiat, dawdim, hamei, humao, khekhrii, chowan, and phut are traditionally prepared dried starters used for production of various ethnic alcoholic beverages in North East states of India. The surveillance of mycobiome associated with these starters have been revealed by culture-dependent methods using phenotypic and molecular tools. We identified Wickerhamomyces anomalus, Pichia anomala, Saccharomycopsis fibuligera, Pichia terricola, Pichia kudriavzevii, and Candida glabrata by ITS-PCR. The diversity of yeasts and molds in all 40 samples was also investigated by culture-independent method using PCR-DGGE analysis. The average distributions of yeasts showed Saccharomyces cerevisiae (16.5%), Saccharomycopsis fibuligera (15.3%), Wickerhamomyces anomalus (11.3%), S. malanga (11.7%), Kluyveromyces marxianus (5.3%), Meyerozyma sp. (2.7%), Candida glabrata (2.7%), and many strains below 2%. About 12 strains of molds were also identified based on PCR-DGGE analysis which included Aspergillus penicillioides (5.0%), Rhizopus oryzae (3.3%), and sub-phylum: Mucoromycotina (2.1%). Different techniques used in this paper revealed the diversity and differences of mycobiome species in starter cultures of India which may be referred as baseline data for further research.
Collapse
Affiliation(s)
- Shankar Prasad Sha
- DAICENTRE (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Mangesh Vasant Suryavanshi
- DAICENTRE (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India.,National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Kunal Jani
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Jyoti Prakash Tamang
- DAICENTRE (DBT-AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|
10
|
Khalkhali S, Mojgani N. In vitro and in vivo safety analysis of Enterococcus faecium 2C isolated from human breast milk. Microb Pathog 2018; 116:73-77. [PMID: 29331368 DOI: 10.1016/j.micpath.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 11/13/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Safety analysis of probiotic bacteria is an obligatory characteristic to be evaluated prior to application in food or pharmacological products. This study was designed to evaluate in vitro and in vivo safety parameters of Enterococcus faecium 2C strain, a probiotic candidate isolated from human breast milk. MATERIAL AND METHODS E.faecium 2C was studied for its hemolytic activity and phenotypic antibiotics resistance profile. In vivo safety of the mentioned Enterococcus strain was studied by determining acute oral toxicity in Wistar Male rats. The animals were randomly divided into two groups of 3 animals each. The test group animals were gavaged daily with bacterial dose of 1 × 1011 CFU/kg of animal body weight for 21 consecutive days. The animals in control group received normal basal diet without any supplementations. Hematological and biochemical parameters, organ weight, body weight and common health features of the animals were recorded. RESULTS E.faecium 2C appeared non-hemolytic and sensitive to the majority of the tested antibiotics. The Wistar male rats fed orally with the mentioned bacterial suspensions survived the test period, and showed normal growth and development. No adverse effects on the general health condition, behavior, and growth were seen in the treated animals compared to control group. Additionally, no significant changes in the hematological results, blood biochemistry, organ weights and histopathology of the rats in treatment groups were observed. None of the vital organs of the treated animals showed signs of bacteremia or infectivity. CONCLUSION E.faecium 2C strain isolated from human breast milk might be considered safe for use in probiotic formulations intended for man and animals.
Collapse
Affiliation(s)
- Soodabeh Khalkhali
- Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran; Department of Microbiology, Fars Research and Science Branch, Islamic Azad University, Fars, Iran
| | - Naheed Mojgani
- Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization, Karaj, IR, Iran.
| |
Collapse
|
11
|
Arasu MV, Al-Dhabi NA. In vitro antifungal, probiotic, and antioxidant functional properties of a novel Lactobacillus paraplantarum isolated from fermented dates in Saudi Arabia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5287-5295. [PMID: 28480570 DOI: 10.1002/jsfa.8413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Fermented foods produced using dates are used in Gulf countries as beneficial and healthful foods. The beneficial microbial flora in fermented dates contributes to maintaining the nutritional properties of dates by preventing the growth of spoilage fungi. Here, we examined the antifungal, probiotic, and antioxidant properties of the novel Lactobacillus strain D-3 isolated from fermented dates. RESULTS Analyzing the morphological, physiological, and biochemical characteristics of this strain demonstrated that it was similar to Lactobacillus species, and molecular-level amplification of the 16S rRNA gene showed that it belonged to Lactobacillus paraplantarum. Under shake flask cultivation using date juice, the strain produced significant amounts of ethanol and lactic, succinic, and acetic acids. Purification of benzoic acid extracted from the extracellular fermentation medium was confirmed by nuclear magnetic resonance, and infrared and mass spectral data revealed minimum inhibitory concentration values of 10, 20, 10, 5, and 10 mg mL-1 for Aspergillus fumigates, Curvularia lunata, Fusarium oxysporum, Gibberella moniliformis, and Penicillium chrysogenum, respectively. The strain showed several advantages, including the ability to survive under conditions similar to the gastrointestinal tract (low pH, bile salts, and antimicrobial susceptibility) and high levels of extracellular enzyme activities. The strain's growth patterns under various concentrations of H2 O2 and its scavenging properties towards hydroxyl radical (64.85%) and DPPH (84.97%) were also interesting properties. CONCLUSION The antifungal, probiotic, and antioxidant properties of L. paraplantarum D3 may provide health benefits to consumers. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
|
13
|
Characterization of fructophilic lactic microbiota of Apis mellifera from the Caucasus Mountains. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1226-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
14
|
Meucci A, Zago M, Rossetti L, Fornasari ME, Bonvini B, Tidona F, Povolo M, Contarini G, Carminati D, Giraffa G. Lactococcus hircilactis sp. nov. and Lactococcus laudensis sp. nov., isolated from milk. Int J Syst Evol Microbiol 2015; 65:2091-2096. [PMID: 25833154 DOI: 10.1099/ijs.0.000225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains of lactic acid bacteria, designated 117(T) and 4195(T), were isolated from goat milk in Valtellina, Italy and from cow milk in Valle Trompia, Italy, respectively, and characterized taxonomically by a polyphasic approach. The strains were Gram-stain-positive, coccoid, non-spore-forming and catalase-negative bacteria. Morphological, physiological and phylogenetic data indicated that these isolates belonged to the genus Lactococcus. Strain 117(T) was closely related to Lactococcus fujiensis, Lactococcus lactis subsp. lactis, L. lactis subsp. cremoris, L. lactis subsp. hordniae, L. lactis subsp. tructae and Lactococcus taiwanensis, showing 93-94% and 82-89% 16S rRNA and rpoB gene sequence similarities, respectively. Strain 4195(T) was closely related to Lactococcus chungangensis, Lactococcus raffinolactis, Lactococcus plantarum and Lactococcus piscium, showing 92-98% and 86-99% 16S rRNA and rpoB gene sequence similarities, respectively. Based on this evidence and the data obtained in the present study, the milk isolates represent two novel species of the genus Lactococcus, for which the names Lactococcushircilactis sp. nov., and Lactococcuslaudensis sp. nov. are proposed. The respective type strains are 117(T) ( = LMG 28352(T) = DSM 28960(T)) and 4195(T )( = LMG 28353(T) = DSM 28961(T)).
Collapse
Affiliation(s)
- Aurora Meucci
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
| | - Miriam Zago
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
| | - Lia Rossetti
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
| | - Maria Emanuela Fornasari
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
| | - Barbara Bonvini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
| | - Flavio Tidona
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
| | - Milena Povolo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
| | - Giovanna Contarini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
| | - Domenico Carminati
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
| | - Giorgio Giraffa
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
| |
Collapse
|
15
|
Lactobacillus crustorum KH: Novel Prospective Probiotic Strain Isolated from Iranian Traditional Dairy Products. Appl Biochem Biotechnol 2014; 175:2178-94. [DOI: 10.1007/s12010-014-1404-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022]
|
16
|
Briggiler Marcó M, Zacarías MF, Vinderola G, Reinheimer JA, Quiberoni A. Biological and probiotic characterisation of spontaneous phage-resistant mutants of Lactobacillus plantarum. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Gatti M, Bottari B, Lazzi C, Neviani E, Mucchetti G. Invited review: Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters. J Dairy Sci 2014; 97:573-91. [DOI: 10.3168/jds.2013-7187] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022]
|
18
|
Arasu MV, Kim DH, Kim PI, Jung MW, Ilavenil S, Jane M, Lee KD, Al-Dhabi NA, Choi KC. In vitro antifungal, probiotic and antioxidant properties of novel Lactobacillus plantarum K46 isolated from fermented sesame leaf. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0777-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
19
|
Pogačić T, Mancini A, Santarelli M, Bottari B, Lazzi C, Neviani E, Gatti M. Diversity and dynamic of lactic acid bacteria strains during aging of a long ripened hard cheese produced from raw milk and undefined natural starter. Food Microbiol 2013; 36:207-15. [DOI: 10.1016/j.fm.2013.05.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/12/2013] [Accepted: 05/28/2013] [Indexed: 12/01/2022]
|
20
|
Zheng Y, Lu Y, Wang J, Yang L, Pan C, Huang Y. Probiotic properties of Lactobacillus strains isolated from Tibetan kefir grains. PLoS One 2013; 8:e69868. [PMID: 23894554 PMCID: PMC3718794 DOI: 10.1371/journal.pone.0069868] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/13/2013] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to evaluate the functional properties of lactic acid bacteria (LAB) isolated from Tibetan kefir grains. Three Lactobacillus isolates identified as Lactobacillus acidophilus LA15, Lactobacillus plantarum B23 and Lactobacillus kefiri D17 that showed resistance to acid and bile salts were selected for further evaluation of their probiotic properties. The 3 selected strains expressed high in vitro adherence to Caco-2 cells. They were sensitive to gentamicin, erythromycin and chloramphenicol and resistant to vancomycin with MIC values of 26 µg/ml. All 3 strains showed potential bile salt hydrolase (BSH) activity, cholesterol assimilation and cholesterol co-precipitation ability. Additionally, the potential effect of these strains on plasma cholesterol levels was evaluated in Sprague-Dawley (SD) rats. Rats in 4 treatment groups were fed the following experimental diets for 4 weeks: a high-cholesterol diet, a high-cholesterol diet plus LA15, a high-cholesterol diet plus B23 or a high-cholesterol diet plus D17. The total cholesterol, triglyceride and low-density lipoprotein cholesterol levels in the serum were significantly (P<0.05) decreased in the LAB-treated rats compared with rats fed a high-cholesterol diet without LAB supplementation. The high-density lipoprotein cholesterol levels in groups B23 and D17 were significantly (P<0.05) higher than those in the control and LA15 groups. Additionally, both fecal cholesterol and bile acid levels were significantly (P<0.05) increased after LAB administration. Fecal lactobacilli counts were significantly (P<0.05) higher in the LAB treatment groups than in the control groups. Furthermore, the 3 strains were detected in the rat small intestine, colon and feces during the feeding trial. The bacteria levels remained high even after the LAB administration had been stopped for 2 weeks. These results suggest that these strains may be used in the future as probiotic starter cultures for manufacturing novel fermented foods.
Collapse
Affiliation(s)
- Yongchen Zheng
- Central Research Laboratory, Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yingli Lu
- Central Research Laboratory, Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jinfeng Wang
- Central Research Laboratory, Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Longfei Yang
- Central Research Laboratory, Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chenyu Pan
- Central Research Laboratory, Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Ying Huang
- Central Research Laboratory, Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
21
|
Huang Y, Wu F, Wang X, Sui Y, Yang L, Wang J. Characterization of Lactobacillus plantarum Lp27 isolated from Tibetan kefir grains: A potential probiotic bacterium with cholesterol-lowering effects. J Dairy Sci 2013; 96:2816-25. [DOI: 10.3168/jds.2012-6371] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/25/2013] [Indexed: 11/19/2022]
|
22
|
Neviani E, Bottari B, Lazzi C, Gatti M. New developments in the study of the microbiota of raw-milk, long-ripened cheeses by molecular methods: the case of Grana Padano and Parmigiano Reggiano. Front Microbiol 2013; 4:36. [PMID: 23450500 PMCID: PMC3584316 DOI: 10.3389/fmicb.2013.00036] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/09/2013] [Indexed: 12/01/2022] Open
Abstract
Microorganisms are an essential component of cheeses and play important roles during both cheese manufacture and ripening. Both starter and secondary flora modify the physical and chemical properties of cheese, contributing and reacting to changes that occur during the manufacture and ripening of cheese. As the composition of microbial population changes under the influence of continuous shifts in environmental conditions and microorganisms interactions during manufacturing and ripening, the characteristics of a given cheese depend also on microflora dynamics. The microbiota present in cheese is complex and its growth and activity represent the most important, but the least controllable steps. In the past, research in this area was dependent on classical microbiological techniques. However, culture-dependent methods are time-consuming and approaches that include a culturing step can lead to inaccuracies due to species present in low numbers or simply uncultivable. Therefore, they cannot be used as a unique tool to monitor community dynamics. For these reasons approaches to cheese microbiology had to change dramatically. To address this, in recent years the focus on the use of culture-independent methods based on the direct analysis of DNA (or RNA) has rapidly increased. Application of such techniques to the study of cheese microbiology represents a rapid, sound, reliable, and effective way for the detection and identification of the microorganisms present in dairy products, leading to major advances in understanding this complex microbial ecosystem and its impact on cheese ripening and quality. In this article, an overview on the recent advances in the use of molecular methods for thorough analysis of microbial communities in cheeses is given. Furthermore, applications of culture-independent approaches to study the microbiology of two important raw-milk, long-ripened cheeses such as Grana Padano and Parmigiano Reggiano, are presented.
Collapse
Affiliation(s)
- Erasmo Neviani
- Department of Food Science, University of ParmaParma, Italy
| | | | | | | |
Collapse
|
23
|
Abstract
Lactobacillus helveticus is an important industrial thermophilic starter that is predominantly employed in the fermentation of milk for the manufacture of several cheeses. In addition to its technological importance, a growing body of scientific evidence shows that strains belonging to the L. helveticus species have health-promoting properties. In this review, we synthesize the results of numerous primary literature papers concerning the ability of L. helveticus strains to positively influence human health. Several in vitro studies showed that L. helveticus possesses many common probiotic properties, such as the ability to survive gastrointestinal transit, adhere to epithelial cells, and antagonize pathogens. In vivo studies in murine models showed that L. helveticus could prevent gastrointestinal infections, enhance protection against pathogens, modulate host immune responses, and affect the composition of the intestinal microbiota. Interventional studies and clinical trials have also demonstrated a number of health-promoting properties of L. helveticus. Finally, several studies suggested that specific enzymatic activities of L. helveticus could indirectly benefit the human host by enhancing the bioavailability of nutrients, removing allergens and other undesired molecules from food, and producing bioactive peptides through the digestion of food proteins. In conclusion, this review demonstrates that in light of the scientific literature presented, L. helveticus can be included among the bacterial species that are generally considered to be probiotic.
Collapse
Affiliation(s)
- Valentina Taverniti
- Division of Food Microbiology and Bioprocesses, Department of Food Environmental and Nutritional Sciences, Università degli Studi di Milano Milan, Italy
| | | |
Collapse
|
24
|
Delavenne E, Mounier J, Déniel F, Barbier G, Le Blay G. Biodiversity of antifungal lactic acid bacteria isolated from raw milk samples from cow, ewe and goat over one-year period. Int J Food Microbiol 2012; 155:185-90. [DOI: 10.1016/j.ijfoodmicro.2012.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 01/23/2012] [Accepted: 02/05/2012] [Indexed: 01/15/2023]
|
25
|
El-Sharoud WM, Delorme C, Darwish MS, Renault P. Genotyping of Streptococcus thermophilus strains isolated from traditional Egyptian dairy products by sequence analysis of the phosphoserine phosphatase (serB) gene with phenotypic characterizations of the strains. J Appl Microbiol 2012; 112:329-37. [PMID: 22141454 DOI: 10.1111/j.1365-2672.2011.05212.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To develop a new, simplified genotyping method for examining the genetic diversity of Streptococcus thermophilus strains isolated from traditional Egyptian fermented dairy products and to characterize phenotypic traits of those strains related to their potential use in bioprocessing applications. METHODS AND RESULTS A novel, simplified approach was developed for genotyping Strep. thermophilus involving the analysis of nucleotide sequence variations within a housekeeping gene encoding the phosphoserine phosphatase (SerB). Using this method, it was possible to identify ten genotypes involving diverse serB alleles among 54 Strep. thermophilus isolates cultured from Egyptian dairy products. These isolates harboured five de novo serB alleles that have not been detected in other Strep. thermophilus strains, deposited in a multilocus sequence typing (MLST) database. To assess distinct genotypes of the organism with phenotypic traits relevant to their potential use in industry, Strep. thermophilus strains were all subjected to a series of phenotypic characterizations. The strains were found to exhibit phenotypic diversity in terms of their ability to ferment lactose and galactose, express urease activity, produce exopolysaccharides and develop acidity. CONCLUSIONS The analysis of nucleotide sequence variations within the serB gene could serve as a suitable tool for probing diverse genotypes of Strep. thermophilus. Streptococcus thermophilus isolates associated with traditional Egyptian dairy products show high degree of genetic and phenotypic diversity. SIGNIFICANCE AND IMPACT OF THE STUDY This study presents a novel, simplified procedure based on serB nucleotide sequencing for genotyping Strep. thermophilus. It also provides a pool of phenotypically diverse Strep. thermophilus cultures, from which certain strains could be selected for use in bioprocessing applications including the preparation of fermented dairy products.
Collapse
Affiliation(s)
- W M El-Sharoud
- Food Safety and Microbial Physiology Laboratory, Dairy Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt.
| | | | | | | |
Collapse
|
26
|
Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G, Reinheimer J, Giraffa G. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 2011; 28:1033-40. [DOI: 10.1016/j.fm.2011.02.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/18/2011] [Accepted: 02/19/2011] [Indexed: 11/30/2022]
|
27
|
Scientific Opinion on the maintenance of the list of QPS microorganisms intentionally added to food or feed (2009 update). EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1431] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|