1
|
Stupar J, Hoel S, Strømseth S, Lerfall J, Rustad T, Jakobsen AN. Selection of lactic acid bacteria for biopreservation of salmon products applying processing-dependent growth kinetic parameters and antimicrobial mechanisms. Heliyon 2023; 9:e19887. [PMID: 37810133 PMCID: PMC10559289 DOI: 10.1016/j.heliyon.2023.e19887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Biopreservation using lactic acid bacteria (LAB) is a promising technology to prevent the growth of pathogenic microorganisms in fresh and mildly processed food. The main aim of this study was to select LAB, originally isolated from ready-to-eat (RTE) seafood, for biopreservation of fresh salmon and processed salmon products. Ten LAB strains (five Carnobacterium and five Leuconostoc) were selected based on previously demonstrated bioprotective properties to investigate their antimicrobial mechanisms and temperature-dependent growth kinetics in a sterile salmon juice model system. Furthermore, five strains (three Carnobacterium and two Leuconostoc) were selected to test process-dependent growth kinetic parameters relevant to the secondary processing of salmon. Two strains (Carnobacterium maltaromaticum 35 and C. divergens 468) showed bacteriocin-like activity against Listeria innocua, while inhibitory effect of cell-free supernatants (CFS) was not observed against Escherichia coli. All selected strains were able to grow in sterile salmon juice at tested temperatures (4, 8, 12 and 16 °C), with specific growth rates (μ) ranging from 0.01 to 0.04/h at 4 °C and reaching a maximum population density of 8.4-9 log CFU/ml. All five strains tested for process-dependent growth kinetic parameters were able to grow in the range of 0.5-5% NaCl and 0.13-0.26% purified condensed smoke (VTABB and JJT01), with inter- and intraspecies variation in growth kinetics. According to the temperature-dependent growth kinetics and antimicrobial assay results, two strains, Leuconostoc mesenteroides 68 (Le.m.68) and C. divergens 468 (C d.468), were selected for in situ test to validate their ability to grow in vacuum-packed fresh salmon at 4 °C. Both strains were able to grow at maximum growth rates of 0.29 ± 0.04/d for Le. m.68 and 0.39 ± 0.06/d for C.d.468, and their final concentrations were 7.91 ± 0.31 and 8.02 ± 0.25 log CFU/g, respectively. This study shows that LAB, originally isolated from RTE seafood, have promising potential as bioprotective strains in fresh and processed salmon products.
Collapse
Affiliation(s)
- Jelena Stupar
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Sunniva Hoel
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Sigrid Strømseth
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Jørgen Lerfall
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Turid Rustad
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, NO-7491, Trondheim, Norway
| |
Collapse
|
2
|
Adeyemi JO, Fawole OA. Metal-Based Nanoparticles in Food Packaging and Coating Technologies: A Review. Biomolecules 2023; 13:1092. [PMID: 37509128 PMCID: PMC10377377 DOI: 10.3390/biom13071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Food security has continued to be a topic of interest in our world due to the increasing demand for food. Many technologies have been adopted to enhance food supply and narrow the demand gap. Thus, the attempt to use nanotechnology to improve food security and increase supply has emerged due to the severe shortcomings of conventional technologies, which have made them insufficient to cater to the continuous demand for food products. Hence, nanoparticles have been identified to play a major role in areas involving food production, protection, and shelf-life extensions. Specifically, metal-based nanoparticles have been singled out to play an important role in manufacturing materials with outstanding properties, which can help increase the shelf-life of different food materials. The physicochemical and biological properties of metal-based nanoparticles, such as the large surface area and antimicrobial properties, have made them suitable and adequately useful, not just as a regular packaging material but as a functional material upon incorporation into biopolymer matrices. These, amongst many other reasons, have led to their wide synthesis and applications, even though their methods of preparation and risk evaluation remain a topic of concern. This review, therefore, briefly explores the available synthetic methods, physicochemical properties, roles, and biological properties of metal-based nanoparticles for food packaging. Furthermore, the associated limitations, alongside quality and safety considerations, of these materials were summarily explored. Although this area of research continues to garner attention, this review showed that metal-based nanoparticles possess great potential to be a leading material for food packaging if the problem of migration and toxicity can be effectively modulated.
Collapse
Affiliation(s)
- Jerry O Adeyemi
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Olaniyi A Fawole
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa
| |
Collapse
|
3
|
Green Silver Nanoparticles Embedded in Cellulosic Network for Fresh Food Packaging. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The demand for increasing the shelf life of fresh food as well as the need for protecting the food against foodborne infections warrant the demand for increasing the shelf life of fresh food. The incorporation of nanoparticles into the packaging material can enhance the preservation of perishable foods. Silver nanoparticles (AgNPs), in particular, have antibacterial, anti-mold, anti-yeast, and anti-viral activities can be embedded into the biodegradable packaging materials for this purpose. This study focuses on antimicrobial packaging materials for food by mixing the extracts of different plants with silver nitrate and depositing this mixture as a layer on the blotting papers, which are thick sheets of paper made of cellulose. Because the blotting papers are highly absorbent and porous, silver nitrate solution along with the plant extracts can be easily applied and allowed for in situ synthesis of AgNPs. Subsequently, these papers were analyzed and characterized using scanning electron microscopy, transmission electron microscopy, atomic absorption spectroscopy, and energy dispersive X-ray analysis. The coated paper exhibited good antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, the coated paper when used as a packaging material for tomatoes and coriander leaf, the shelf life was extended to about 30 days and 15 days respectively. The prepared cost-effective silver packing material can be used in food packaging for various perishable foods.
Collapse
|
4
|
Recent Developments in Seafood Packaging Technologies. Foods 2021; 10:foods10050940. [PMID: 33923022 PMCID: PMC8145365 DOI: 10.3390/foods10050940] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Seafood products are highly perishable, owing to their high water activity, close to neutral pH, and high content of unsaturated lipids and non-protein nitrogenous compounds. Thus, such products require immediate processing and/or packaging to retain their safety and quality. At the same time, consumers prefer fresh, minimally processed seafood products that maintain their initial quality properties. The present article aims to review the literature over the past decade on: (i) innovative, individual packaging technologies applied to extend the shelf life of fish and fishery products, (ii) the most common combinations of the above technologies applied as multiple hurdles to maximize the shelf life of seafood products, and (iii) the respective food packaging legislation. Packaging technologies covered include: Modified atmosphere packaging; vacuum packaging; vacuum skin packaging; active food packaging, including oxygen scavengers; carbon dioxide emitters; moisture regulators; antioxidant and antimicrobial packaging; intelligent packaging, including freshness indicators; time–temperature indicators and leakage indicators; retort pouch processing and edible films; coatings/biodegradable packaging, used individually or in combination for maximum preservation potential.
Collapse
|
5
|
Kontominas MG, Badeka AV, Kosma IS, Nathanailides CI. Innovative Seafood Preservation Technologies: Recent Developments. Animals (Basel) 2021; 11:E92. [PMID: 33418992 PMCID: PMC7825328 DOI: 10.3390/ani11010092] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/16/2022] Open
Abstract
Fish and fishery products are among the food commodities of high commercial value, high-quality protein content, vitamins, minerals and unsaturated fatty acids, which are beneficial to health. However, seafood products are highly perishable and thus require proper processing to maintain their quality and safety. On the other hand, consumers, nowadays, demand fresh or fresh-like, minimally processed fishery products that do not alter their natural quality attributes. The present article reviews the results of studies published over the last 15 years in the literature on: (i) the main spoilage mechanisms of seafood including contamination with pathogens and (ii) innovative processing technologies applied for the preservation and shelf life extension of seafood products. These primarily include: high hydrostatic pressure, natural preservatives, ozonation, irradiation, pulse light technology and retort pouch processing.
Collapse
Affiliation(s)
- Michael G. Kontominas
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.V.B.); (I.S.K.)
| | - Anastasia V. Badeka
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.V.B.); (I.S.K.)
| | - Ioanna S. Kosma
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.V.B.); (I.S.K.)
| | | |
Collapse
|
6
|
Sharma A. A review on traditional technology and safety challenges with regard to antinutrients in legume foods. Journal of Food Science and Technology 2020; 58:2863-2883. [PMID: 34294949 DOI: 10.1007/s13197-020-04883-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/09/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
A large section of the human population relies on legumes as a staple food. Legumes are a rich source of nutrients and possess several health-related beneficial properties. However, the nutritional quality of legumes is challenged by the presence of a considerable amount of antinutrients. Consumption of inadequately processed legumes might affect normal metabolism and cause adverse human health-related effects. Effective processing becomes necessary to reduce these antinutritional factors before consumption. Optimizing the processing variables during preparation of legume-based traditional foods by using response surface methodology could be a valuable option to reduce antinutrients. The present review focuses on the efficacy of traditional household-scale processing unit operations vis-à-vis the reduction of antinutrients. Optimally prepared products should ensure meeting the consumer demand of improved, healthy, and more nutritious and safe foods. Modeling-based optimization approach will be helpful to define best practices at the small-, medium-, and large scale production alike. It should contribute towards effective utilization of legume resources, and to alleviate malnutrition and associated diseases world-wide.
Collapse
Affiliation(s)
- Anand Sharma
- Present Address: Department of Botany, Shri Ramasamy Memorial University Sikkim, 5th Mile, Tadong, Sikkim 737 102 India.,Microbiology Laboratory, Department of Botany, University of North Bengal, Siliguri, 734013 India
| |
Collapse
|
7
|
Abel N, Rotabakk BT, Lerfall J. Effect of salt on CO2 solubility in salmon (Salmo salar L) stored in modified atmosphere. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Baptista RC, Horita CN, Sant'Ana AS. Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Res Int 2019; 127:108762. [PMID: 31882098 DOI: 10.1016/j.foodres.2019.108762] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Seafood is highly perishable, presenting a rapid loss of its quality soon after capture. Temperature is the critical parameter that impacts on seafood shelf-life reduction, allowing the growth of foodborne pathogens and spoilage microorganisms. In recent years, the search by additional methods of preserving seafood has increased, able to ensure quality and safety. Several natural preservatives have highlighted and gained considerable attention from the scientific community, consumers, industry, and health sectors as a method with broad action antimicrobial and generally economical. Natural preservatives, from different sources, have been widely studied, such as chitosan from animal sources, essential oils, and plant extracts from a plant source, lactic acid bacteria, and bacteriocins from microbiological sources and organic acid from different sources, all with great potential for use in seafood systems. This review focuses on the natural preservatives studied in seafood matrices, their forms of application, concentrations usually employed, their mechanisms of action, factors that interfere in their use and the synergistic effect of the interactions among the natural preservatives, with a focus for maintenance of quality and ensure of food safety.
Collapse
Affiliation(s)
- Rafaela C Baptista
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Claudia N Horita
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
9
|
Adeyeye SAO, Fayemi OE. Nanotechnology and food processing: between innovations and consumer safety. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2019. [DOI: 10.1080/15428052.2018.1476276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Samuel Ayofemi Olalekan Adeyeye
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Olanrewaju Emmanuel Fayemi
- Biological Sciences, Mountain Top University, Prayer City, Ogun State, Nigeria
- Food Science & Technology, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Ogun State, Nigeria
| |
Collapse
|
10
|
Li Y, Huang J, Yuan C, Ding T, Chen S, Hu Y. Developing a new spoilage potential algorithm and identifying spoilage volatiles in small yellow croaker (Larimichthys polyactis) under vacuum packaging condition. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Lerfall J, Jakobsen AN, Skipnes D, Waldenstrøm L, Hoel S, Rotabakk BT. Comparative Evaluation on the Quality and Shelf life of Atlantic Salmon (Salmo salar L.) Filets Using Microwave and Conventional Pasteurization in Combination with Novel Packaging Methods. J Food Sci 2018; 83:3099-3109. [PMID: 30440091 DOI: 10.1111/1750-3841.14384] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/13/2018] [Accepted: 10/05/2018] [Indexed: 01/01/2023]
Abstract
A comparative evaluation on the effect of carbon dioxide (CO2 ) on quality and shelf life of Atlantic salmon loins pasteurized with microwave and conventional technology was conducted. The experimental design allowed CO2 to enter the salmon muscle before (soluble gas stabilization [SGS] + vacuum) or after pasteurization (CO2 emitter + vacuum), whereas the control samples (vacuum only) were not presented for CO2 . This setup resulted in six different groups; three heated with microwaves and three with conventional pasteurization. The core temperature of microwave samples was 58.8 ± 2.2 °C, whereas the surface temperature was equal to the oven temperature (62 °C) during conventional pasteurization and close to the core temperature during microwave pasteurization (57.6 ± 1.4 °C). Microwave-heated samples showed higher microbial growth; decreased shelf life; and darker (lower L* -value), more reddish (higher a* -value), and yellowish (higher b* -value) colors compared to conventional-heated salmon. Lowest liquid loss (LL) was observed in salmon packaged with the CO2 emitter, whereas a SGS step prior to pasteurization did not affect the LL negatively as compared to samples packaged in vacuum only. Treatment with CO2 , independent of the prestep using SGS or an emitter, resulted in increased shelf life. Protein denaturation, microbial growth, product color, product shelf life, and sensory properties of the salmon loin were significantly affected by the applied pasteurization method (microwave- or conventional pasteurization). However, the heat load was probably too high to detect differences resulting from the pretreatment using SGS or packaging with CO2 emitter. PRACTICAL APPLICATION: Recent developments with increased time pressure from both work and past time activities have led to a tremendous increase in the demand for convenient, tasty ready-to-use food options. Furthermore, contemporary trends for consumption of fresh or lightly processed seafood stress the need to develop processing methods that allow a fulfillment of these demands, while still offering a reasonable shelf life. Carbon dioxide in combination with either microwave or conventional pasteurization is innovative processing technology that can meet consumer's demand of such products.
Collapse
Affiliation(s)
- Jørgen Lerfall
- Dept. of Biotechnology and Food Science, Norwegian Univ. of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Dept. of Biotechnology and Food Science, Norwegian Univ. of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Dagbjørn Skipnes
- Dept. of Processing Technology, Nofima AS, P.O. Box 327, NO-4002, Stavanger, Norway
| | - Lene Waldenstrøm
- Dept. of Biotechnology and Food Science, Norwegian Univ. of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Sunniva Hoel
- Dept. of Biotechnology and Food Science, Norwegian Univ. of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Bjørn Tore Rotabakk
- Dept. of Processing Technology, Nofima AS, P.O. Box 327, NO-4002, Stavanger, Norway
| |
Collapse
|
12
|
Zhao L, Qin X, Han W, Wu X, Wang Y, Hu X, Ling J, Liao X. Novel application of CO2-assisted high pressure processing in cucumber juice and apple juice. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Ki BM, Ryu HW, Cho KS. Extended local similarity analysis (eLSA) reveals unique associations between bacterial community structure and odor emission during pig carcasses decomposition. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:718-727. [PMID: 29469603 DOI: 10.1080/10934529.2018.1439856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Soil burial and composting methods have been widely used for the disposal of pig carcasses. The relationship between bacterial community structure and odor emission was examined using extended local similarity analysis (eLSA) during the degradation of pig carcasses in soil and compost. In soil, Hyphomicrobium, Niastella, Rhodanobacter, Polaromonas, Dokdonella and Mesorhizobium were associated with the emission of sulfur-containing odors such as hydrogen sulfide, methyl mercaptan and dimethyl disulfide. Sphingomonas, Rhodanobacter, Mesorhizobium, Dokdonella, Leucobacter and Truepera were associated with the emission of nitrogen-containing odors including ammonia and trimetylamine. In compost, however, Carnobacteriaceae, Lachnospiaceae and Clostridiales were highly correlated with the emission of sulfur-containing odors, while Rumincoccaceae was associated with the emission of nitrogen-containing odors. The emission of organic acids was closely related to Massilia, Sphaerobacter and Bradyrhizobiaceae in soil, but to Actinobacteria, Sporacetigenium, Micromonosporaceae and Solirubrobacteriales in compost. This study suggests that network analysis using eLSA is a useful strategy for exploring the mechanisms of odor emission during biodegradation of pig carcasses.
Collapse
Affiliation(s)
- Bo-Min Ki
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Hee Wook Ryu
- b Department of Chemical Engineering , Soongsil University , Seoul , Republic of Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| |
Collapse
|
14
|
Bou R, Claret A, Stamatakis A, Martínez B, Guerrero L. Quality changes and shelf-life extension of ready-to-eat fish patties by adding encapsulated citric acid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:5352-5360. [PMID: 28497482 DOI: 10.1002/jsfa.8424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Citric acid is commonly used as a flavoring and preservative in food and beverages. The effect of adding citric acid directly or encapsulated (each at 1 and 2 g kg-1 ) on the quality and shelf-life of ready-to-eat sea bass patties was evaluated during storage at 4 °C in vacuum skin packaging. RESULTS Microbial growth and total basic volatile nitrogen were maintained at relatively low levels up to 8 weeks of storage. With respect to oxidative stability, the addition of encapsulated citric acid minimized secondary oxidation values more efficiently than its direct addition, regardless of the concentration. This is in agreement with the decreased fishy odor observed in those patties containing encapsulated citric acid. Accordingly, sensory analysis showed that the addition of encapsulated citric acid at 1 g kg-1 resulted in lower scores in fish aroma compared to that of the control. Sourness is dependent on the amount of citric acid added, regardless of the form (direct or encapsulated). CONCLUSIONS The form of citric acid addition, rather than the amount of citric acid added, caused changes in texture. Therefore, the use of encapsulated citric acid represents a suitable strategy that is of great interest in the seafood industry. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ricard Bou
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Food Technology, Finca Camps i Armet s/n, Monells, Spain
| | - Anna Claret
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Food Technology, Finca Camps i Armet s/n, Monells, Spain
| | - Antonios Stamatakis
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Food Technology, Finca Camps i Armet s/n, Monells, Spain
| | - Brigitte Martínez
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Food Technology, Finca Camps i Armet s/n, Monells, Spain
| | - Luis Guerrero
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Food Technology, Finca Camps i Armet s/n, Monells, Spain
| |
Collapse
|
15
|
Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK. Application of Nanotechnology in Food Science: Perception and Overview. Front Microbiol 2017; 8:1501. [PMID: 28824605 PMCID: PMC5545585 DOI: 10.3389/fmicb.2017.01501] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022] Open
Abstract
Recent innovations in nanotechnology have transformed a number of scientific and industrial areas including the food industry. Applications of nanotechnology have emerged with increasing need of nanoparticle uses in various fields of food science and food microbiology, including food processing, food packaging, functional food development, food safety, detection of foodborne pathogens, and shelf-life extension of food and/or food products. This review summarizes the potential of nanoparticles for their uses in the food industry in order to provide consumers a safe and contamination free food and to ensure the consumer acceptability of the food with enhanced functional properties. Aspects of application of nanotechnology in relation to increasing in food nutrition and organoleptic properties of foods have also been discussed briefly along with a few insights on safety issues and regulatory concerns on nano-processed food products.
Collapse
Affiliation(s)
- Trepti Singh
- Department of Microbiology, Gurukula Kangri UniversityHaridwar, India
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-SeoulSeoul, South Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and TechnologyItanagar, India
| | - Verinder Wahla
- Department of Microbiology, Gurukula Kangri UniversityHaridwar, India
| | - Vivek K Bajpai
- Department of Applied Microbiology and Biotechnology, Yeungnam UniversityGyeongsan-si, South Korea
| |
Collapse
|
16
|
Combined use of cinnamon essential oil and MAP/vacuum packaging to increase the microbial and sensorial shelf life of lean pork and salmon. Food Packag Shelf Life 2017. [DOI: 10.1016/j.fpsl.2017.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Bouletis AD, Arvanitoyannis IS, Hadjichristodoulou C. Application of modified atmosphere packaging on aquacultured fish and fish products: A review. Crit Rev Food Sci Nutr 2017; 57:2263-2285. [DOI: 10.1080/10408398.2013.862202] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Achilleas D. Bouletis
- School of Agricultural Sciences, Department of Agriculture, Ichthyology and Aquatic Environment, University of Thessaly, Volos, Hellas, Greece
| | - Ioannis S. Arvanitoyannis
- School of Agricultural Sciences, Department of Agriculture, Ichthyology and Aquatic Environment, University of Thessaly, Volos, Hellas, Greece
| | | |
Collapse
|
18
|
Espitia PJ, Batista RA, Azeredo HM, Otoni CG. Probiotics and their potential applications in active edible films and coatings. Food Res Int 2016; 90:42-52. [DOI: 10.1016/j.foodres.2016.10.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/29/2022]
|
19
|
Kuang H, Yang L, Shah NP, Aguilar ZP, Wang L, Xu H, Wei H. Synergistic in vitro and in vivo antimicrobial effect of a mixture of ZnO nanoparticles and Lactobacillus fermentation liquor. Appl Microbiol Biotechnol 2015; 100:3757-66. [PMID: 26695158 DOI: 10.1007/s00253-015-7221-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
20
|
García NL, Famá L, D’Accorso NB, Goyanes S. Biodegradable Starch Nanocomposites. ADVANCED STRUCTURED MATERIALS 2015. [DOI: 10.1007/978-81-322-2470-9_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Qiu X, Chen S, Liu G, Yang Q. Quality enhancement in the Japanese sea bass (Lateolabrax japonicas) fillets stored at 4°C by chitosan coating incorporated with citric acid or licorice extract. Food Chem 2014; 162:156-60. [DOI: 10.1016/j.foodchem.2014.04.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 11/30/2022]
|
22
|
Neetoo H, Mahomoodally F. Use of antimicrobial films and edible coatings incorporating chemical and biological preservatives to control growth of Listeria monocytogenes on cold smoked salmon. BIOMED RESEARCH INTERNATIONAL 2014; 2014:534915. [PMID: 25089272 PMCID: PMC4096007 DOI: 10.1155/2014/534915] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/09/2014] [Accepted: 06/07/2014] [Indexed: 11/17/2022]
Abstract
The relatively high incidence of Listeria monocytogenes in cold smoked salmon (CSS) is of concern as it is a refrigerated processed food of extended durability (REPFED). The objectives of this study were to compare and optimize the antimicrobial effectiveness of films and coatings incorporating nisin (Nis) and sodium lactate (SL), sodium diacetate (SD), potassium sorbate (PS), and/or sodium benzoate (SB) in binary or ternary combinations on CSS. Surface treatments incorporating Nis (25000 IU/mL) in combination with PS (0.3%) and SB (0.1%) had the highest inhibitory activity, reducing the population of L. monocytogenes by a maximum of 3.3 log CFU/cm(2) (films) and 2.9 log CFU/cm(2) (coatings) relative to control samples after 10 days of storage at 21°C. During refrigerated storage, coatings were more effective in inhibiting growth of L. monocytogenes than their film counterparts. Cellulose-based coatings incorporating Nis, PS, and SB reduced the population of L. monocytogenes, and anaerobic and aerobic spoilage flora by a maximum of 4.2, 4.8, and 4.9 log CFU/cm(2), respectively, after 4 weeks of refrigerated storage. This study highlights the effectiveness of cellulose-based edible coatings incorporating generally regarded as safe (GRAS) natural and chemical antimicrobials to inhibit the development of L. monocytogenes and spoilage microflora thus enhancing the safety and quality of CSS.
Collapse
Affiliation(s)
- Hudaa Neetoo
- Department of Agriculture and Food Science, Faculty of Agriculture, University of Mauritius, Mauritius
| | - Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Mauritius
| |
Collapse
|
23
|
Shi LE, Li ZH, Zheng W, Zhao YF, Jin YF, Tang ZX. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:173-86. [DOI: 10.1080/19440049.2013.865147] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.04.042] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Kayaci F, Ertas Y, Uyar T. Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8156-8165. [PMID: 23898890 DOI: 10.1021/jf402923c] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polyvinyl alcohol (PVA) nanofibers encapsulating eugenol (EG)/cyclodextrin (CD) inclusion complexes (IC) (EG/CD-IC) were produced via electrospinning technique in order to achieve high thermal stability and slow release of EG. In order to find out the most favorable CD type for the stabilization of EG, three types of native cyclodextrins (α-CD, β-CD, and γ-CD) were used for the formation of EG/CD-IC. In the case of PVA/EG/α-CD nanofibers, uncomplexed EG was detected indicating that α-CD is not a proper host for EG/CD-IC formation. However, for PVA/EG/β-CD-IC and PVA/EG/γ-CD-IC nanofibers, enhanced durability and high thermal stability for EG were achieved due to the inclusion complexation. The electrospun nanofibers encapsulating CD-IC of active compounds such as eugenol may be quite useful in the food industry due to the extremely large surface area of nanofibers along with specific functionality, enhanced thermal stability, and slow release of the active compounds by CD inclusion complexation.
Collapse
Affiliation(s)
- Fatma Kayaci
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | | | | |
Collapse
|
26
|
Macé S, Joffraud JJ, Cardinal M, Malcheva M, Cornet J, Lalanne V, Chevalier F, Sérot T, Pilet MF, Dousset X. Evaluation of the spoilage potential of bacteria isolated from spoiled raw salmon (Salmo salar) fillets stored under modified atmosphere packaging. Int J Food Microbiol 2013; 160:227-38. [DOI: 10.1016/j.ijfoodmicro.2012.10.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/01/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
|
27
|
Muhlisin, Kang SM, Choi WH, Lee KT, Cheong SH, Lee SK. The Effect of Modified Atmosphere Packaging and Addition of Rosemary Extract, Sodium Acetate and Calcium Lactate Mixture on the Quality of Pre-cooked Hamburger Patties during Refrigerated Storage. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2013; 26:134-42. [PMID: 25049716 PMCID: PMC4093050 DOI: 10.5713/ajas.2012.12468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/29/2012] [Accepted: 10/17/2012] [Indexed: 11/27/2022]
Abstract
The effect of modified atmosphere packaging (MAP; 30% CO2+70% N2 or 100% N2) and an additive mixture (500 ppm rosemary extract, 3,000 ppm sodium acetate and 1,500 ppm calcium lactate) on the quality of pre-cooked hamburger patties during storage at 5°C for 14 d was evaluated. The addition of the additive mixture reduced aerobic and anaerobic bacteria counts in both 30% CO2-MAP (30% CO2+70% N2) and 100% N2-MAP (p<0.05). The 30% CO2-MAP was more effective to suppress the microbial growth than 100% N2-MAP, moreover the 30% CO2-MAP combined with additive mixture resulted in the lowest bacterial counts. The hamburger patties with additive mixture showed lower CIE L* and CIE a*, and higher CIE b* than those with no additive mixture. The 30% CO2-MAP tended to decrease the TBARS during storage regardless of the addition of additives. The use of 30% CO2-MAP in combination with additives mixture was effective for maintaining the quality and extending the shelf-life of pre-cooked hamburger patties.
Collapse
Affiliation(s)
- Muhlisin
- Department of Animal Products and Food Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Sun Moon Kang
- Department of Animal Products and Food Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Won Hee Choi
- Department of Animal Products and Food Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Keun Taik Lee
- Department of Animal Products and Food Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Sung Hee Cheong
- Department of Animal Products and Food Science, Kangwon National University, Chuncheon 200-701, Korea
| | - Sung Ki Lee
- Department of Animal Products and Food Science, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
28
|
Schirmer BC, Langsrud S, Møretrø T, Hagtvedt T, Heir E. Performance of two commercial rapid methods for sampling and detection of Listeria in small-scale cheese producing and salmon processing environments. J Microbiol Methods 2012; 91:295-300. [DOI: 10.1016/j.mimet.2012.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 11/15/2022]
|
29
|
Giavasis I, Apostolopoulou A, Deirmentzoglou A, Katsanidis E. Combined Hurdle Effects of Process Parameters on Biochemical, Microbiological and Sensory Attributes of Trout Fillets. J FOOD PROCESS PRES 2012. [DOI: 10.1111/j.1745-4549.2012.00795.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- I. Giavasis
- Department of Food Technology; Technological Educational Institute of Larisa; Karditsa Greece
| | - A. Apostolopoulou
- Department of Food Science and Technology, Faculty of Agriculture; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| | - A. Deirmentzoglou
- Department of Food Science and Technology, Faculty of Agriculture; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| | - E. Katsanidis
- Department of Food Science and Technology, Faculty of Agriculture; Aristotle University of Thessaloniki; Thessaloniki 54124 Greece
| |
Collapse
|
30
|
Powell S, Tamplin M. Microbial communities on Australian modified atmosphere packaged Atlantic salmon. Food Microbiol 2012; 30:226-32. [DOI: 10.1016/j.fm.2011.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/22/2011] [Accepted: 10/05/2011] [Indexed: 11/16/2022]
|
31
|
Macé S, Cornet J, Chevalier F, Cardinal M, Pilet MF, Dousset X, Joffraud JJ. Characterisation of the spoilage microbiota in raw salmon (Salmo salar) steaks stored under vacuum or modified atmosphere packaging combining conventional methods and PCR–TTGE. Food Microbiol 2012; 30:164-72. [DOI: 10.1016/j.fm.2011.10.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/27/2011] [Accepted: 10/20/2011] [Indexed: 11/28/2022]
|
32
|
Santos JS, Oliveira MBPP. Revisão: alimentos frescos minimamente processados embalados em atmosfera modificada. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2012. [DOI: 10.1590/s1981-67232012000100001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Os alimentos frescos, minimamente processados e embalados sob atmosfera modificada atraem os consumidores que procuram produtos frescos e saudáveis, e que, ao mesmo tempo, são fáceis de transportar e preparar. A atmosfera no interior das embalagens consiste numa mistura de gases que está otimizada para cada alimento, de modo a preservar as suas qualidades durante mais tempo. A manutenção da temperatura de refrigeração durante o processamento, o armazenamento, a distribuição e a comercialização é essencial, por causa da natureza perecível dos produtos frescos minimamente processados. Este trabalho discute o estado de arte dos alimentos frescos minimamente processados (frutas, vegetais, carnes e pescados) embalados em atmosfera modificada, com uma descrição pormenorizada dos últimos desenvolvimentos nesse campo.
Collapse
|
33
|
Espitia PJP, Soares NDFF, Coimbra JSDR, de Andrade NJ, Cruz RS, Medeiros EAA. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. FOOD BIOPROCESS TECH 2012. [DOI: 10.1007/s11947-012-0797-6] [Citation(s) in RCA: 464] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Ulbricht C, Seamon E, Windsor RC, Armbruester N, Bryan JK, Costa D, Giese N, Gruenwald J, Iovin R, Isaac R, Grimes Serrano JM, Tanguay-Colucci S, Weissner W, Yoon H, Zhang J. An Evidence-Based Systematic Review of Cinnamon (Cinnamomumspp.) by the Natural Standard Research Collaboration. J Diet Suppl 2011; 8:378-454. [DOI: 10.3109/19390211.2011.627783] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Muhlisin M, Kang SM, Choi WH, Lee KT, Cheong SH, Lee SK. Effects of Organic Acids Mix and Modified Atmosphere Packaging on the Storage Quality of Sliced Bacon. Korean J Food Sci Anim Resour 2011. [DOI: 10.5851/kosfa.2011.31.5.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
36
|
Cosansu S, Mol S, Alakavuk DU, Ozturan S. The effect of lemon juice on bonito (Sarda sarda, Bloch, 1793) preserved by sous vide packaging. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2010.02507.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Naila A, Flint S, Fletcher G, Bremer P, Meerdink G. Control of biogenic amines in food--existing and emerging approaches. J Food Sci 2010; 75:R139-50. [PMID: 21535566 PMCID: PMC2995314 DOI: 10.1111/j.1750-3841.2010.01774.x] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/29/2010] [Indexed: 11/26/2022]
Abstract
Biogenic amines have been reported in a variety of foods, such as fish, meat, cheese, vegetables, and wines. They are described as low molecular weight organic bases with aliphatic, aromatic, and heterocyclic structures. The most common biogenic amines found in foods are histamine, tyramine, cadaverine, 2-phenylethylamine, spermine, spermidine, putrescine, tryptamine, and agmatine. In addition octopamine and dopamine have been found in meat and meat products and fish. The formation of biogenic amines in food by the microbial decarboxylation of amino acids can result in consumers suffering allergic reactions, characterized by difficulty in breathing, itching, rash, vomiting, fever, and hypertension. Traditionally, biogenic amine formation in food has been prevented, primarily by limiting microbial growth through chilling and freezing. However, for many fishing based subsistence populations, such measures are not practical. Therefore, secondary control measures to prevent biogenic amine formation in foods or to reduce their levels once formed need to be considered as alternatives. Such approaches to limit microbial growth may include hydrostatic pressures, irradiation, controlled atmosphere packaging, or the use of food additives. Histamine may potentially be degraded by the use of bacterial amine oxidase or amine-negative bacteria. Only some will be cost-effective and practical for use in subsistence populations.
Collapse
Affiliation(s)
- Aishath Naila
- Inst. of Food Nutrition and Human Health, Massey Univ., Private Bag 11-222 Palmerston North, NZ.
| | | | | | | | | |
Collapse
|
38
|
A dissolving CO2 headspace combined with organic acids prolongs the shelf-life of fresh pork. Meat Sci 2010; 85:280-4. [DOI: 10.1016/j.meatsci.2010.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/16/2009] [Accepted: 01/10/2010] [Indexed: 11/22/2022]
|