1
|
Kutyna DR, Onetto CA, Williams TC, Goold HD, Paulsen IT, Pretorius IS, Johnson DL, Borneman AR. Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome. Nat Commun 2022; 13:3628. [PMID: 35750675 PMCID: PMC9232646 DOI: 10.1038/s41467-022-31305-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
The Synthetic Yeast Genome Project (Sc2.0) represents the first foray into eukaryotic genome engineering and a framework for designing and building the next generation of industrial microbes. However, the laboratory strain S288c used lacks many of the genes that provide phenotypic diversity to industrial and environmental isolates. To address this shortcoming, we have designed and constructed a neo-chromosome that contains many of these diverse pan-genomic elements and which is compatible with the Sc2.0 design and test framework. The presence of this neo-chromosome provides phenotypic plasticity to the Sc2.0 parent strain, including expanding the range of utilizable carbon sources. We also demonstrate that the induction of programmable structural variation (SCRaMbLE) provides genetic diversity on which further adaptive gains could be selected. The presence of this neo-chromosome within the Sc2.0 backbone may therefore provide the means to adapt synthetic strains to a wider variety of environments, a process which will be vital to transitioning Sc2.0 from the laboratory into industrial applications. The Sc2.0 consortia is reengineering the yeast genome. To expand the Sc2.0 genetic repertoire, the authors build a neo-chromosome comprising variable loci from diverse yeast isolates, providing phenotypic plasticity for use in synthetic backgrounds.
Collapse
Affiliation(s)
- Dariusz R Kutyna
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA, 5064, Australia
| | - Cristobal A Onetto
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA, 5064, Australia
| | - Thomas C Williams
- ARC Centre of Excellence in Synthetic Biology and Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2019, Australia
| | - Hugh D Goold
- ARC Centre of Excellence in Synthetic Biology and Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2019, Australia.,New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, NSW, 2568, Australia
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology and Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2019, Australia
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology and Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2019, Australia.,The Chancellery, Macquarie University, Sydney, NSW, 2109, Australia
| | - Daniel L Johnson
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA, 5064, Australia.,The Chancellery, Macquarie University, Sydney, NSW, 2109, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA, 5064, Australia. .,School of Wine, Food and Agriculture, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
2
|
Takagi H. Molecular mechanisms and highly functional development for stress tolerance of the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2021; 85:1017-1037. [PMID: 33836532 DOI: 10.1093/bbb/zbab022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
In response to environmental stress, microorganisms adapt to drastic changes while exerting cellular functions by controlling gene expression, metabolic pathways, enzyme activities, and protein-protein interactions. Microbial cells that undergo a fermentation process are subjected to stresses, such as high temperature, freezing, drying, changes in pH and osmotic pressure, and organic solvents. Combinations of these stresses that continue over long terms often inhibit cells' growth and lead to their death, markedly limiting the useful functions of microorganisms (eg their fermentation ability). Thus, high stress tolerance of cells is required to improve productivity and add value to fermented/brewed foods and biofuels. This review focuses on stress tolerance mechanisms, including l-proline/l-arginine metabolism, ubiquitin system, and transcription factors, and the functional development of the yeast Saccharomyces cerevisiae, which has been used not only in basic science as a model of higher eukaryotes but also in fermentation processes for making alcoholic beverages, food products, and bioethanol.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
3
|
Lahue C, Madden AA, Dunn RR, Smukowski Heil C. History and Domestication of Saccharomyces cerevisiae in Bread Baking. Front Genet 2020; 11:584718. [PMID: 33262788 PMCID: PMC7686800 DOI: 10.3389/fgene.2020.584718] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been instrumental in the fermentation of foods and beverages for millennia. In addition to fermentations like wine, beer, cider, sake, and bread, S. cerevisiae has been isolated from environments ranging from soil and trees, to human clinical isolates. Each of these environments has unique selection pressures that S. cerevisiae must adapt to. Bread dough, for example, requires S. cerevisiae to efficiently utilize the complex sugar maltose; tolerate osmotic stress due to the semi-solid state of dough, high salt, and high sugar content of some doughs; withstand various processing conditions, including freezing and drying; and produce desirable aromas and flavors. In this review, we explore the history of bread that gave rise to modern commercial baking yeast, and the genetic and genomic changes that accompanied this. We illustrate the genetic and phenotypic variation that has been documented in baking strains and wild strains, and how this variation might be used for baking strain improvement. While we continue to improve our understanding of how baking strains have adapted to bread dough, we conclude by highlighting some of the remaining open questions in the field.
Collapse
Affiliation(s)
- Caitlin Lahue
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Anne A. Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Khajavi MZ, Tripathi AD, Khosravi-Darani K. Strategies of Freezing Tolerance in Yeast: Genes’ Rapid Response for Accumulation of Stress Protectants. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/2210315508666181009113623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Production of frozen ready-to-bake bakery products has gained significant attention during the past few years. However, the freezing process during the production of frozen bakery products may decrease the quality especially in the case of suppression of the activity of baker yeast. Great improvements in the quality of frozen bakery products may be achieved by increasing the stability of yeast during freezing storage. Many microorganisms have different kinds of mechanisms to suppress environmental, freezing or thawing stresses. In this review paper, reported strategies which are used for rising tolerance of microorganisms, especially yeast, are reviewed. One of the introduced protective procedures is the accumulation of special intra-cellular metabolites by some microorganisms. Two main key metabolites in this regard are trehalose and proline (which act as an osmoprotectant and decrease the melting point of DNA), which are introduced in this review article. Also, cloning strategies for increasing their bioaccumulation are pointed out, and their mechanisms of action are described. Finally, overexpression of SNR84 gene as an another microbial strategy for surviving in harsh environmental conditions is (small nucleolar RNAs) mentioned, which leads to ribosomal pseudouridines (responsible for freezing tolerance and decreasing growth rate of organisms).
Collapse
Affiliation(s)
- Maryam Z. Khajavi
- Students` Research Committee, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abhishek D. Tripathi
- Centre of Food Science and Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, U.P, India
| | - Kianoush Khosravi-Darani
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Mat Nanyan NSB, Watanabe D, Sugimoto Y, Takagi H. Involvement of the stress-responsive transcription factor gene MSN2 in the control of amino acid uptake in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 19:5536248. [DOI: 10.1093/femsyr/foz052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/17/2019] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
The transcriptional factor Msn2 plays a pivotal role in response to environmental stresses by activating the transcription of stress-responsive genes in Saccharomyces cerevisiae. Our previous studies demonstrate that intracellular proline acts as a key protectant against various stresses. It is unknown, however, whether Msn2 is involved in proline homeostasis in S. cerevisiae cells. We here found that MSN2-overexpressing (MSN2-OE) cells showed higher sensitivity to a toxic analogue of proline, l-azetidine-2-carboxylic acid (AZC), as well as to the other amino acid toxic analogues, than wild-type cells. Overexpression of MSN2 increased the intracellular content of AZC, suggesting that Msn2 positively regulates the uptake of proline. Among the known proline permease genes, GNP1 was shown to play a predominant role in the AZC toxicity. Based on quantitative real-time PCR and western blot analyses, the overexpression of MSN2 did not induce any increases in the transcript levels of GNP1 or the other proline permease genes, while the amount of the Gnp1 protein was markedly increased in MSN2-OE cells. Microscopic observation suggested that the endocytic degradation of Gnp1 was impaired in MSN2-OE cells. Thus, this study sheds light on a novel link between the Msn2-mediated global stress response and the amino acid homeostasis in S. cerevisiae.
Collapse
Affiliation(s)
- Noreen Suliani binti Mat Nanyan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Daisuke Watanabe
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Yukiko Sugimoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
6
|
Ohashi M, Nasuno R, Watanabe D, Takagi H. Stable N-acetyltransferase Mpr1 improves ethanol productivity in the sake yeast Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2019; 46:1039-1045. [DOI: 10.1007/s10295-019-02177-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 11/29/2022]
Abstract
Abstract
N-Acetyltransferase Mpr1 was originally discovered as an enzyme that detoxifies l-azetidine-2-carboxylate through its N-acetylation in the yeast Saccharomyces cerevisiae Σ1278b. Mpr1 protects yeast cells from oxidative stresses possibly by activating a novel l-arginine biosynthesis. We recently constructed a stable variant of Mpr1 (N203K) by a rational design based on the structure of the wild-type Mpr1 (WT). Here, we examined the effects of N203K on ethanol fermentation of the sake yeast S. cerevisiae strain lacking the MPR1 gene. When N203K was expressed in the diploid Japanese sake strain, its fermentation performance was improved compared to WT. In a laboratory-scale brewing, a sake strain expressing N203K produced more ethanol than WT. N203K also affected the contents of flavor compounds and organic acids. These results suggest that the stable Mpr1 variant contributes to the construction of new industrial yeast strains with improved fermentation ability and diversity of taste and flavor.
Collapse
Affiliation(s)
- Masataka Ohashi
- Nara Prefecture Institute of Industrial Development 129-1 Kashiwagi-cho 630-8031 Nara Nara Japan
| | - Ryo Nasuno
- 0000 0000 9227 2257 grid.260493.a Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama 630-0192 Ikoma Nara Japan
| | - Daisuke Watanabe
- 0000 0000 9227 2257 grid.260493.a Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama 630-0192 Ikoma Nara Japan
| | - Hiroshi Takagi
- 0000 0000 9227 2257 grid.260493.a Graduate School of Science and Technology Nara Institute of Science and Technology 8916-5 Takayama 630-0192 Ikoma Nara Japan
| |
Collapse
|
7
|
Gélinas P. Active Dry Yeast: Lessons from Patents and Science. Compr Rev Food Sci Food Saf 2019; 18:1227-1255. [DOI: 10.1111/1541-4337.12445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Pierre Gélinas
- Saint‐Hyacinthe Research and Development CentreAgriculture and Agri‐Food Canada Saint‐Hyacinthe Quebec Canada J2S 8E3
| |
Collapse
|
8
|
Takagi H. Metabolic regulatory mechanisms and physiological roles of functional amino acids and their applications in yeast. Biosci Biotechnol Biochem 2019; 83:1449-1462. [PMID: 30712454 DOI: 10.1080/09168451.2019.1576500] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In yeast, amino acid metabolism and its regulatory mechanisms vary under different growth environments by regulating anabolic and catabolic processes, including uptake and export, and the metabolic styles form a complicated but robust network. There is also crosstalk with various metabolic pathways, products and signal molecules. The elucidation of metabolic regulatory mechanisms and physiological roles is important fundamental research for understanding life phenomenon. In terms of industrial application, the control of amino acid composition and content is expected to contribute to an improvement in productivity, and to add to the value of fermented foods, alcoholic beverages, bioethanol, and other valuable compounds (proteins and amino acids, etc.). This review article mainly describes our research in constructing yeast strains with high functionality, focused on the metabolic regulatory mechanisms and physiological roles of "functional amino acids", such as l-proline, l-arginine, l-leucine, l-valine, l-cysteine, and l-methionine, found in yeast.
Collapse
Affiliation(s)
- Hiroshi Takagi
- a Division of Biological Science, Graduate School of Science and Technology , Nara Institute of Science and Technology , Nara , Japan
| |
Collapse
|
9
|
Omedi JO, Huang W, Zhang B, Li Z, Zheng J. Advances in present-day frozen dough technology and its improver and novel biotech ingredients development trends-A review. Cereal Chem 2019. [DOI: 10.1002/cche.10122] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jacob O. Omedi
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
| | - Binle Zhang
- State Key Laboratory of Food Science and Technology, Laboratory of Baking and Fermentation Science, Cereal/Sourdough and Ingredient Functionality Research, School of Food Science and Technology; Jiangnan University; Wuxi China
- MagiBake GS International; Jinjiang; Quanzhou China
| | - Zhibin Li
- MagiBake GS International; Jinjiang; Quanzhou China
| | | |
Collapse
|
10
|
Luo W, Sun DW, Zhu Z, Wang QJ. Improving freeze tolerance of yeast and dough properties for enhancing frozen dough quality - A review of effective methods. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Wang Z, Wang J, Li N, Li J, Trail F, Dunlap JC, Townsend JP. Light sensing by opsins and fungal ecology: NOP-1 modulates entry into sexual reproduction in response to environmental cues. Mol Ecol 2017; 27:216-232. [PMID: 29134709 DOI: 10.1111/mec.14425] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 09/30/2017] [Accepted: 10/16/2017] [Indexed: 01/25/2023]
Abstract
Understanding the genetic basis of the switch from asexual to sexual lifestyles in response to sometimes rapid environmental changes is one of the major challenges in fungal ecology. Light appears to play a critical role in the asexual-sexual switch-but fungal genomes harbour diverse light sensors. Fungal opsins are homologous to bacterial green-light-sensory rhodopsins, and their organismal functions in fungi have not been well understood. Three of these opsin-like proteins were widely distributed across fungal genomes, but homologs of the Fusarium opsin-like protein CarO were present only in plant-associated fungi. Key amino acids, including potential retinal binding sites, functionally diverged on the phylogeny of opsins. This diversification of opsin-like proteins could be correlated with life history-associated differences among fungi in their expression and function during morphological development. In Neurospora crassa and related species, knockout of the opsin NOP-1 led to a phenotype in the regulation of the asexual-sexual switch, modulating response to both light and oxygen conditions. Sexual development commenced early in ∆nop-1 strains cultured in unsealed plates under constant blue and white light. Furthermore, comparative transcriptomics showed that the expression of nop-1 is light-dependent and that the ∆nop-1 strain abundantly expresses genes involved in oxidative stress response, genes enriched in NAD/NADP binding sites, genes with functions in proton transmembrane movement and catalase activity, and genes involved in the homeostasis of protons. Based on these observations, we contend that light and oxidative stress regulate the switch via light-responsive and ROS pathways in model fungus N. crassa and other fungi.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Junrui Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.,Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Department of Plant Pathology, Michigan State University, East Lansing, MI, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.,Program in Microbiology, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. Int J Food Microbiol 2016; 238:233-240. [DOI: 10.1016/j.ijfoodmicro.2016.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/05/2016] [Accepted: 09/20/2016] [Indexed: 11/20/2022]
|
13
|
Abstract
The Saccharomyces sensu stricto group encompasses species ranging from the industrially ubiquitous yeast Saccharomyces cerevisiae to those that are confined to geographically limited environmental niches. The wealth of genomic data that are now available for the Saccharomyces genus is providing unprecedented insights into the genomic processes that can drive speciation and evolution, both in the natural environment and in response to human-driven selective forces during the historical "domestication" of these yeasts for baking, brewing, and winemaking.
Collapse
|
14
|
Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function. Appl Environ Microbiol 2013; 80:1002-12. [PMID: 24271183 DOI: 10.1128/aem.03130-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.
Collapse
|
15
|
Mitochondrial metabolism and stress response of yeast: Applications in fermentation technologies. J Biosci Bioeng 2013; 117:383-93. [PMID: 24210052 DOI: 10.1016/j.jbiosc.2013.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/27/2013] [Accepted: 09/17/2013] [Indexed: 11/22/2022]
Abstract
Mitochondria are sites of oxidative respiration. During sake brewing, sake yeasts are exposed to long periods of hypoxia; the structure, role, and metabolism of mitochondria of sake yeasts have not been studied in detail. It was first elucidated that the mitochondrial structure of sake yeast transforms from filamentous to dotted structure during sake brewing, which affects malate metabolism. Based on the information of yeast mitochondria during sake brewing, practical technologies have been developed; (i) breeding pyruvate-underproducing sake yeast by the isolation of a mutant resistant to an inhibitor of mitochondrial pyruvate transport; and (ii) modifying malate and succinate production by manipulating mitochondrial activity. During the bread-making process, baker's yeast cells are exposed to a variety of baking-associated stresses, such as freeze-thaw, air-drying, and high sucrose concentrations. These treatments induce oxidative stress generating reactive oxygen species due to mitochondrial damage. A novel metabolism of proline and arginine catalyzed by N-acetyltransferase Mpr1 in the mitochondria eventually leads to synthesis of nitric oxide, which confers oxidative stress tolerance on yeast cells. The enhancement of proline and arginine metabolism could be promising for breeding novel baker's yeast strains that are tolerant to multiple baking-associated stresses. These new and practical methods provide approaches to improve the processes in the field of industrial fermentation technologies.
Collapse
|
16
|
Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast. Int J Food Microbiol 2013; 165:241-5. [DOI: 10.1016/j.ijfoodmicro.2013.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/03/2013] [Accepted: 05/16/2013] [Indexed: 01/26/2023]
|
17
|
Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism. Proc Natl Acad Sci U S A 2013; 110:11821-6. [PMID: 23818613 DOI: 10.1073/pnas.1300558110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mpr1 (sigma1278b gene for proline-analog resistance 1), which was originally isolated as N-acetyltransferase detoxifying the proline analog L-azetidine-2-carboxylate, protects yeast cells from various oxidative stresses. Mpr1 mediates the L-proline and L-arginine metabolism by acetylating L-Δ(1)-pyrroline-5-carboxylate, leading to the L-arginine-dependent production of nitric oxide, which confers oxidative stress tolerance. Mpr1 belongs to the Gcn5-related N-acetyltransferase (GNAT) superfamily, but exhibits poor sequence homology with the GNAT enzymes and unique substrate specificity. Here, we present the X-ray crystal structure of Mpr1 and its complex with the substrate cis-4-hydroxy-L-proline at 1.9 and 2.3 Å resolution, respectively. Mpr1 is folded into α/β-structure with eight-stranded mixed β-sheets and six α-helices. The substrate binds to Asn135 and the backbone amide of Asn172 and Leu173, and the predicted acetyl-CoA-binding site is located near the backbone amide of Phe138 and the side chain of Asn178. Alanine substitution of Asn178, which can interact with the sulfur of acetyl-CoA, caused a large reduction in the apparent kcat value. The replacement of Asn135 led to a remarkable increase in the apparent Km value. These results indicate that Asn178 and Asn135 play an important role in catalysis and substrate recognition, respectively. Such a catalytic mechanism has not been reported in the GNAT proteins. Importantly, the amino acid substitutions in these residues increased the L-Δ(1)-pyrroline-5-carboxylate level in yeast cells exposed to heat stress, indicating that these residues are also crucial for its physiological functions. These studies provide some benefits of Mpr1 applications, such as the breeding of industrial yeasts and the development of antifungal drugs.
Collapse
|
18
|
Bach TMH, Takagi H. Properties, metabolisms, and applications of l-proline analogues. Appl Microbiol Biotechnol 2013; 97:6623-34. [DOI: 10.1007/s00253-013-5022-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/26/2022]
|
19
|
Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. J Biosci Bioeng 2012; 113:592-5. [DOI: 10.1016/j.jbiosc.2011.12.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/26/2011] [Indexed: 11/22/2022]
|
20
|
Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast. Microb Cell Fact 2012; 11:40. [PMID: 22462683 PMCID: PMC3359278 DOI: 10.1186/1475-2859-11-40] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 04/01/2012] [Indexed: 11/21/2022] Open
Abstract
Background During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. Results We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO plays an important role in baking-associated stress tolerance. Conclusions In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains.
Collapse
Affiliation(s)
- Yu Sasano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Sasano Y, Haitani Y, Ohtsu I, Shima J, Takagi H. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int J Food Microbiol 2012; 152:40-3. [DOI: 10.1016/j.ijfoodmicro.2011.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/03/2011] [Accepted: 10/09/2011] [Indexed: 10/16/2022]
|
22
|
Nishimura A, Kotani T, Sasano Y, Takagi H. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res 2010; 10:687-98. [DOI: 10.1111/j.1567-1364.2010.00650.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Shima J, Ando A, Nakamura T. Environmental Stress Tolerance of Yeast: Importance in Industrial Uses and Molecular Mechanisms. J JPN SOC FOOD SCI 2010. [DOI: 10.3136/nskkk.57.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|