1
|
Agunwah IM, Ogueke CC, Nwosu JN, Anyogu A. Microbiological evaluation of the indigenous fermented condiment okpeye available at various retail markets in the south-eastern region of Nigeria. Heliyon 2024; 10:e25493. [PMID: 38356605 PMCID: PMC10865259 DOI: 10.1016/j.heliyon.2024.e25493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
In Africa, indigenous fermented condiments contribute to food security as a low-cost source of protein. Okpeye is an indigenous fermented condiment produced from Prosopis africana seeds. The reliance on spontaneous fermentation processes and unhygienic practices during production often results in the contamination of the final product with microbial hazards. A microbiological evaluation of 18 commercial samples of okpeye purchased from six markets in two cities in southeastern Nigeria was conducted. Fifty-nine (59) bacteria were isolated and identified at the species level by phenotyping and sequencing the 16S rRNA, gyrB and rpoB genes. Bacillus (47.4 %) and Staphylococcus (42.3 %) were the predominant bacterial genera in okpeye. Overall, B. amyloliquefaciens and S. simulans were the most frequently occurring bacteria and were present in all samples. In addition, B. cereus was isolated in samples obtained from all markets. Other bacterial species included B. velezensis, Oceanobacillus caeni, S. cohnii, Escherichia fergusonni and Vagacoccus lutrae. The B. cereus isolates (10) were screened for the presence of 8 enterotoxin genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM) and one emetic gene (cesB). The non-haemolytic enterotoxin (nheABC) and haemolytic enterotoxin (hblABD) complexes were present in 70 % and 50 % of B. cereus respectively. The positive rate of cytK and entFM genes was 70 %, while the cesB gene was 30 %. Antibiotic susceptibility assessment showed that most of the isolates were susceptible to gentamicin, tetracycline, streptomycin, and erythromycin but resistant to ciprofloxacin and vancomycin. These findings highlight the need for further controls to reduce contamination with potential pathogenic bacteria in indigenous fermented condiments such as okpeye. There is also a need to educate producers regarding hygienic practices to safeguard public health and food security.
Collapse
Affiliation(s)
- Ijeoma M. Agunwah
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Chika C. Ogueke
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Justina N. Nwosu
- Department of Food Science and Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Amarachukwu Anyogu
- Food Safety and Security, School of Biomedical Sciences, University of West London, St Mary's Road, Ealing, W5 5RF, London, UK
| |
Collapse
|
2
|
Ilango S, Antony U. Probiotic microorganisms from non-dairy traditional fermented foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Kewuyemi YO, Kesa H, Adebo OA. Trends in functional food development with three-dimensional (3D) food printing technology: prospects for value-added traditionally processed food products. Crit Rev Food Sci Nutr 2021; 62:7866-7904. [PMID: 33970701 DOI: 10.1080/10408398.2021.1920569] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
One of the recent, innovative, and digital food revolutions gradually gaining acceptance is three-dimensional food printing (3DFP), an additive technique used to develop products, with the possibility of obtaining foods with complex geometries. Recent interest in this technology has opened the possibilities of complementing existing processes with 3DFP for better value addition. Fermentation and malting are age-long traditional food processes known to improve food value, functionality, and beneficial health constituents. Several studies have demonstrated the applicability of 3D printing to manufacture varieties of food constructs, especially cereal-based, from root and tubers, fruit and vegetables as well as milk and milk products, with potential for much more value-added products. This review discusses the extrusion-based 3D printing of foods and the major factors affecting the process development of successful edible 3D structures. Though some novel food products have emanated from 3DFP, considering the beneficial effects of traditional food processes, particularly fermentation and malting in food, concerted efforts should also be directed toward developing 3D products using substrates from these conventional techniques. Such experimental findings will significantly promote the availability of minimally processed, affordable, and convenient meals customized in complex geometric structures with enhanced functional and nutritional values.
Collapse
Affiliation(s)
- Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality, College of Business and Economics, University of Johannesburg, Gauteng, South Africa
| | - Hema Kesa
- School of Tourism and Hospitality, College of Business and Economics, University of Johannesburg, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Gauteng, South Africa
| |
Collapse
|
4
|
Solichová K, Němečková I, Šviráková E, Horáčková Š. Novel identification methods including a species-specific PCR for hazardousBacillusspecies. ACTA ALIMENTARIA 2019. [DOI: 10.1556/066.2019.48.4.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- K. Solichová
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6-Dejvice. The Czech Republic
| | - I. Němečková
- Dairy Research Institute Ltd., Ke Dvoru 791/12a, 160 00 Prague 6-Vokovice. The Czech Republic
| | - E. Šviráková
- Department of Food Preservation, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6-Dejvice. The Czech Republic
| | - Š. Horáčková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6-Dejvice. The Czech Republic
| |
Collapse
|
5
|
Toxins in Fermented Foods: Prevalence and Preventions-A Mini Review. Toxins (Basel) 2018; 11:toxins11010004. [PMID: 30586849 PMCID: PMC6356804 DOI: 10.3390/toxins11010004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Fermented foods (FF) are widely consumed around the world, and FF are one of the prime sources of toxins and pathogenic microbes that are associated with several foodborne outbreaks. Mycotoxins (aflatoxins, fumonisins, sterigmatocystin, nivalenol, deoxynivalenol, zearalenone, ochratoxin, and alternariol), bacterial toxins (shiga toxin and botulinum), biogenic amines, and cyanogenic glycosides are the common toxins found in FF in addition to the pathogenic microbes. Fermented milk products and meat sausages are extremely vulnerable to contamination. Cumulative updated information about a specific topic such as toxins in FF is essential for the improvement of safer preparation and consumption of fermented foods. Accordingly, the current manuscript summarizes the reported mycotoxins, bacterial toxins, and/or toxins from other sources; detection methods and prevention of toxins in FF (use of specific starter culture, optimized fermentation process, and pre- and post-processing treatments); and major clinical outbreaks. This literature survey was made in Scopus, Web of Science, NCBI-PubMed, and Google Scholar using the search terms "Toxins" and "Fermented Foods" as keywords. The appropriate scientific documents were screened for relevant information and they were selected without any chronological restrictions.
Collapse
|
6
|
Investigation of the diversity and safety of the predominant Bacillus pumilus sensu lato and other Bacillus species involved in the alkaline fermentation of cassava leaves for the production of Ntoba Mbodi. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Ben Abdallah D, Frikha-Gargouri O, Tounsi S. Bacillus amyloliquefaciens strain 32a as a source of lipopeptides for biocontrol of Agrobacterium tumefaciens strains. J Appl Microbiol 2015; 119:196-207. [PMID: 25764969 DOI: 10.1111/jam.12797] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 11/30/2022]
Abstract
AIMS A Bacillus amyloliquefaciens strain, designated 32a, was used to identify new compounds active against Agrobacterium tumefaciens and to evaluate their efficiency to control crown gall on carrot discs. METHODS AND RESULTS Based on PCR-assays, four gene clusters were shown to direct the synthesis of the cyclic lipopeptides surfactin, iturin A, bacillomycin D and fengycin. Mass spectrometry analysis of culture supernatant led to the identification of these secondary metabolites, except bacillomycin, with heterogeneous mixture of homologues. Antimicrobial assays using lipopeptides-enriched extract showed a strong inhibitory activity against several bacterial and fungal strains, including Ag. tumefaciens. Biological control assays on carrot discs using both 32a spores and extract resulted in significant protection against crown gall disease, similar to that provided by the reference antagonistic strain Agrobacterium rhizogenes K1026. CONCLUSIONS In contrast to all active compounds against Ag. tumefaciens that are of proteinaceous nature, this work enables for the first time to correlate the strong protective effect of B. amyloliquefaciens strain 32a towards crown gall disease with the production of a mixture of lipopeptides. SIGNIFICANCE AND IMPACT OF THE STUDY The findings could be useful for growers and nursery men who are particularly interested in the biocontrol of the crown gall disease.
Collapse
Affiliation(s)
- D Ben Abdallah
- Biopesticides Team (LPIP), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - O Frikha-Gargouri
- Biopesticides Team (LPIP), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - S Tounsi
- Biopesticides Team (LPIP), Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
8
|
Physicochemical and microbiological characterization of chicha, a rice-based fermented beverage produced by Umutina Brazilian Amerindians. Food Microbiol 2015; 46:210-217. [DOI: 10.1016/j.fm.2014.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/22/2022]
|
9
|
Alvarez-Sieiro P, Redruello B, Ladero V, Cañedo E, Martin MC, Fernández M, Alvarez MA. Solubilization of gliadins for use as a source of nitrogen in the selection of bacteria with gliadinase activity. Food Chem 2015; 168:439-44. [DOI: 10.1016/j.foodchem.2014.07.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/11/2014] [Accepted: 07/15/2014] [Indexed: 01/08/2023]
|
10
|
Lin K, Cai T, Song F, Yuan C, Li Z, Zhang Q, Xing Y, Xiang W. Incidence, Intraspecific Diversity and Toxigenic Profile of <i>Bacillus cereus</i> in the Yellow-Water, a Fermented Food Flavor Enhancer. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kai Lin
- Key Laboratory of Food Biotechnology of Sichuan, College of Bioengineering, Xihua University
| | - Ting Cai
- Key Laboratory of Food Biotechnology of Sichuan, College of Bioengineering, Xihua University
| | - Feifei Song
- Key Laboratory of Food Biotechnology of Sichuan, College of Bioengineering, Xihua University
| | - Chunhong Yuan
- Key Laboratory of Food Biotechnology of Sichuan, College of Bioengineering, Xihua University
| | | | - Qing Zhang
- Key Laboratory of Food Biotechnology of Sichuan, College of Bioengineering, Xihua University
| | - Yage Xing
- Key Laboratory of Food Biotechnology of Sichuan, College of Bioengineering, Xihua University
| | - Wenliang Xiang
- Key Laboratory of Food Biotechnology of Sichuan, College of Bioengineering, Xihua University
| |
Collapse
|
11
|
Thorsen L, Kando CK, Sawadogo H, Larsen N, Diawara B, Ouédraogo GA, Hendriksen NB, Jespersen L. Characteristics and phylogeny of Bacillus cereus strains isolated from Maari, a traditional West African food condiment. Int J Food Microbiol 2014; 196:70-8. [PMID: 25528535 DOI: 10.1016/j.ijfoodmicro.2014.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Maari is a spontaneously fermented food condiment made from baobab tree seeds in West African countries. This type of product is considered to be safe, being consumed by millions of people on a daily basis. However, due to the spontaneous nature of the fermentation the human pathogen Bacillus cereus occasionally occurs in Maari. This study characterizes succession patterns and pathogenic potential of B. cereus isolated from the raw materials (ash, water from a drilled well (DW) and potash), seed mash throughout fermentation (0-96h), after steam cooking and sun drying (final product) from two production sites of Maari. Aerobic mesophilic bacterial (AMB) counts in raw materials were of 10(5)cfu/ml in DW, and ranged between 6.5×10(3) and 1.2×10(4)cfu/g in potash, 10(9)-10(10)cfu/g in seed mash during fermentation and 10(7) - 10(9) after sun drying. Fifty three out of total 290 AMB isolates were identified as B. cereus sensu lato by use of ITS-PCR and grouped into 3 groups using PCR fingerprinting based on Escherichia coli phage-M13 primer (M13-PCR). As determined by panC gene sequencing, the isolates of B. cereus belonged to PanC types III and IV with potential for high cytotoxicity. Phylogenetic analysis of concatenated sequences of glpF, gmk, ilvD, pta, pur, pycA and tpi revealed that the M13-PCR group 1 isolates were related to B. cereus biovar anthracis CI, while the M13-PCR group 2 isolates were identical to cereulide (emetic toxin) producing B. cereus strains. The M13-PCR group 1 isolates harboured poly-γ-D-glutamic acid capsule biosynthesis genes capA, capB and capC showing 99-100% identity with the environmental B. cereus isolate 03BB108. Presence of cesB of the cereulide synthetase gene cluster was confirmed by PCR in M13-PCR group 2 isolates. The B. cereus harbouring the cap genes were found in potash, DW, cooking water and at 8h fermentation. The "emetic" type B. cereus were present in DW, the seed mash at 48-72h of fermentation and in the final product, while the remaining isolates (PanC type IV) were detected in ash, at 48-72h fermentation and in the final product. This work sheds light on the succession and pathogenic potential of B. cereus species in traditional West African food condiment and clarifies their phylogenetic relatedness to B. cereus biovar anthracis. Future implementation of GMP and HACCP and development of starter cultures for controlled Maari fermentations will help to ensure a safe product.
Collapse
Affiliation(s)
- Line Thorsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Christine Kere Kando
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso; Université Polytechnique de Bobo-Dioulasso, 01 BP 1091 Bobo-Dioulasso, Burkina Faso
| | - Hagrétou Sawadogo
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso
| | - Nadja Larsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Bréhima Diawara
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso
| | | | - Niels Bohse Hendriksen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lene Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
12
|
Identification and characterisation of organisms associated with chocolate pralines and sugar syrups used for their production. Int J Food Microbiol 2014; 185:167-76. [DOI: 10.1016/j.ijfoodmicro.2014.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/18/2014] [Accepted: 05/25/2014] [Indexed: 11/21/2022]
|
13
|
Agbobatinkpo PB, Thorsen L, Nielsen DS, Azokpota P, Akissoe N, Hounhouigan JD, Jakobsen M. Biodiversity of aerobic endospore-forming bacterial species occurring in Yanyanku and Ikpiru, fermented seeds of Hibiscus sabdariffa used to produce food condiments in Benin. Int J Food Microbiol 2013; 163:231-8. [DOI: 10.1016/j.ijfoodmicro.2013.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 02/17/2013] [Accepted: 02/19/2013] [Indexed: 11/29/2022]
|
14
|
Draft Whole-Genome Sequence of Bacillus sonorensis Strain L12, a Source of Nonribosomal Lipopeptides. GENOME ANNOUNCEMENTS 2013; 1:e0009713. [PMID: 23538904 PMCID: PMC3622994 DOI: 10.1128/genomea.00097-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus sonorensis L12 draft genome sequence is approximately 4,647,754 bp in size with a G+C content of 45.2%. Over 86% of the genome contains protein-encoding genes, including several gene clusters for de novo biosynthesis of the nonribosomal lipopeptides iturin, bacitracin, and fengycin, which could mean that the strain exhibits antifungal effects.
Collapse
|
15
|
Compaoré CS, Nielsen DS, Ouoba LII, Berner TS, Nielsen KF, Sawadogo-Lingani H, Diawara B, Ouédraogo GA, Jakobsen M, Thorsen L. Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment. Int J Food Microbiol 2013; 162:297-307. [PMID: 23466466 DOI: 10.1016/j.ijfoodmicro.2013.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 01/19/2023]
Abstract
Bikalga is a Hibiscus sabdariffa seed fermented condiment widely consumed in Burkina Faso and neighboring countries. The fermentation is dominated by Bacillus subtilis group species. Ten B. subtilis subsp. subtilis (six isolates) and Bacillus licheniformis (four isolates) isolated from traditional Bikalga were examined for their antimicrobial activity against a panel of 36 indicator organisms including Gram-positive and Gram-negative bacteria and yeasts. The Bacillus spp. isolates showed variable inhibitory abilities depending on the method used. Both Gram-positive and Gram-negative bacteria were inhibited in the agar spot assay while only Gram-positive pathogens were inhibited in the agar well diffusion assay. Cell free supernatants (CFS) of pure cultures of 3 B. subtilis subsp. subtilis (G2, H4 and F1) strains inhibited growth of Listeria monocytogenes, Micrococcus luteus, Staphylococcus aureus and Bacillus cereus, while CFS of 2 B. licheniformis (E3 and F9) strains only inhibited M. luteus. The antimicrobial substance(s) produced by B. subtilis subsp. subtilis H4 was further characterized. The antimicrobial substance(s) produced by H4 was detected from mid-exponential growth phase. The activity was sensitive to protease and trypsin, but resistant to the proteolytic action of proteinase K and papain. Treatment with α-amylase and lipase II resulted in a complete loss of antimicrobial effect, indicating that a sugar moiety and lipid moiety are necessary for the activity. Treatment with mercapto-ethanol resulted in a significant loss, indicative of the presence of disulfide bridges. The antimicrobial activity of H4 was heat resistant and active at pH3-10. PCR detection of yiwB, sboA, spoX, albA and spaS, etnS genes and genes coding for surfactins and plipastatins (fengycins) indicated a potential for subtilosin, subtilin and lipopeptide production, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was carried out and a single band of approximately 4kDa had antimicrobial activity. Ultra high performance liquid chromatography-time of flight mass spectrometry (UHPLC-TOFMS) analysis of the 4kDa band allowed identification of surfactin and a protein with a monoisotopic mass of 3346.59Da, which is dissimilar in size to subtilosin and subtilin. Surfactin is a cyclic lipoheptapeptide, which contains a β-hydroxy fatty acid, but no di-sulfide bridges or sugar residues. The complete loss of activity upon amylase treatment indicates that surfactin was not responsible for the observed antimicrobial effect. However, it cannot completely be ruled out that surfactin acts synergistically with the detected protein, though further investigations are needed to confirm this.
Collapse
Affiliation(s)
- Clarisse S Compaoré
- Département Technologie Alimentaire (DTA/IRSAT/CNRST), Ouagadougou 03 BP 7047, Burkina Faso.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ahaotu I, Anyogu A, Njoku OH, Odu NN, Sutherland JP, Ouoba LII. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba. Int J Food Microbiol 2013; 162:95-104. [PMID: 23376783 DOI: 10.1016/j.ijfoodmicro.2013.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 11/29/2022]
Abstract
Molecular identification of Bacillus spp. involved in the fermentation of African oil bean seeds for production of Ugba, as well as ability of the Bacillus spp. isolated to produce toxins, were investigated. Forty-nine bacteria were isolated from Ugba produced in different areas of South Eastern Nigeria and identified by phenotyping and sequencing of 16S rRNA, gyrB and rpoB genes. Genotypic diversities at interspecies and intraspecies level of the isolates were screened by PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS-PCR) and repetitive sequence-based PCR (rep-PCR). The ability of the bacteria to produce toxins was also investigated by detection of genes encoding production of haemolysin BL (HblA, HblC, HblD), non-haemolytic enterotoxin (NheA, NheB, NheC), cytotoxin K (CytK) and emetic toxin (EM1) using PCR with specific primers. Moreover, a Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCET-RPLA) was used to screen ability of the isolates to produce haemolysin in broth and during fermentation of African oil bean seeds. The isolates were characterized as motile, rod-shaped, endospore forming, catalase positive, Gram-positive bacteria. They were identified as Bacillus cereus sensu lato (42), Lysinibacillus xylanilyticus (3), Bacillus clausii (1), Bacillus licheniformis (1), Bacillus subtilis (1), and Bacillus safensis (1). B. cereus was the predominant Bacillus species and was present in all samples studied. Using ITS-PCR, interspecies diversity was observed among isolates, with six clusters representing each of the pre-cited species. Rep-PCR was more discriminatory (eight clusters) and allowed further differentiation at intraspecies level for the B. cereus and L. xylanilyticus isolates with two genotypes for each species. Genes encoding production of non-haemolytic enterotoxin (NheA, NheB, NheC) and cytotoxin K (CytK) genes were detected in all B. cereus isolates, while Hbl genes (HblA, HblC, HblD) were detected in only one isolate. The emetic-specific gene fragment was not detected in any of the isolates studied. None of the toxin genes screened was detected in isolates belonging to other Bacillus species. Using RPLA, haemolysin production was detected in one isolate of B. cereus, which showed positive amplicons for Hbl genes, both during cultivation in broth and during fermentation of oil bean seeds.
Collapse
Affiliation(s)
- I Ahaotu
- Department of Food Science, Federal University of Technology, Owerri, Nigeria
| | | | | | | | | | | |
Collapse
|
17
|
Screening for Bacillus subtilis group isolates that degrade cyanogens at pH4.5–5.0. Int J Food Microbiol 2013; 161:31-5. [DOI: 10.1016/j.ijfoodmicro.2012.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/02/2012] [Accepted: 11/23/2012] [Indexed: 11/24/2022]
|
18
|
Akhtar S, Sarker MR, Hossain A. Microbiological food safety: a dilemma of developing societies. Crit Rev Microbiol 2012; 40:348-59. [DOI: 10.3109/1040841x.2012.742036] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Ouoba LII, Kando C, Parkouda C, Sawadogo-Lingani H, Diawara B, Sutherland JP. The microbiology of Bandji, palm wine of Borassus akeassii from Burkina Faso: identification and genotypic diversity of yeasts, lactic acid and acetic acid bacteria. J Appl Microbiol 2012; 113:1428-41. [PMID: 22979949 DOI: 10.1111/jam.12014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/18/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
AIM To investigate physicochemical characteristics and especially genotypic diversity of the main culturable micro-organisms involved in fermentation of sap from Borassus akeassii, a newly identified palm tree from West Africa. METHODS AND RESULTS Physicochemical characterization was performed using conventional methods. Identification of micro-organisms included phenotyping and sequencing of: 26S rRNA gene for yeasts, 16S rRNA and gyrB genes for lactic acid bacteria (LAB) and acetic acid bacteria (AAB). Interspecies and intraspecies genotypic diversities of the micro-organisms were screened respectively by amplification of the ITS1-5.8S rDNA-ITS2/16S-23S rDNA ITS regions and repetitive sequence-based PCR (rep-PCR). The physicochemical characteristics of samples were: pH: 3.48-4.12, titratable acidity: 1.67-3.50 mg KOH g(-1), acetic acid: 0.16-0.37%, alcohol content: 0.30-2.73%, sugars (degrees Brix): 2.70-8.50. Yeast included mainly Saccharomyces cerevisiae and species of the genera Arthroascus, Issatchenkia, Candida, Trichosporon, Hanseniaspora, Kodamaea, Schizosaccharomyces, Trigonopsis and Galactomyces. Lactobacillus plantarum was the predominant LAB species. Three other species of Lactobacillus were also identified as well as isolates of Leuconostoc mesenteroides, Fructobacillus durionis and Streptococcus mitis. Acetic acid bacteria included nine species of the genus Acetobacter with Acetobacter indonesiensis as predominant species. In addition, isolates of Gluconobacter oxydans and Gluconacetobacter saccharivorans were also identified. Intraspecies diversity was observed for some species of micro-organisms including four genotypes for Acet. indonesiensis, three for Candida tropicalis and Lactobacillus fermentum and two each for S. cerevisiae, Trichosporon asahii, Candida pararugosa and Acetobacter tropicalis. CONCLUSION fermentation of palm sap from B. akeassii involved multi-yeast-LAB-AAB cultures at genus, species and intraspecies level. SIGNIFICANCE AND IMPACT OF THE STUDY First study describing microbiological and physicochemical characteristics of palm wine from B. akeassii. Genotypic diversity of palm wine LAB and AAB not reported before is demonstrated and this constitutes valuable information for better understanding of the fermentation which can be used to improve the product quality and develop added value by-products.
Collapse
Affiliation(s)
- L I I Ouoba
- Microbiology Research Unit, Faculty of Life Sciences, School of Human Sciences, London Metropolitan University, London, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Antimicrobial susceptibility of Bacillus strains isolated from primary starters for African traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis. Appl Environ Microbiol 2012; 78:7903-14. [PMID: 22941078 DOI: 10.1128/aem.00730-12] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus spp. are widely used as feed additives and probiotics. However, there is limited information on their resistance to various antibiotics, and there is a growing concern over the transfer of antibiotic resistance genes. The MIC for 8 antibiotics was determined for 85 Bacillus species strains, Bacillus subtilis subsp. subtilis (n = 29), Bacillus licheniformis (n = 38), and Bacillus sonorensis (n = 18), all of which were isolated from starters for Sudanese bread production. All the strains were sensitive to tetracycline (8.0 mg/liter), vancomycin (4.0 mg/liter), and gentamicin (4.0 mg/liter) but resistant to streptomycin. Sensitivity to clindamycin, chloramphenicol, and kanamycin was species specific. The erythromycin resistance genes ermD and ermK were detected by PCR in all of the erythromycin-resistant (MIC, ≥16.0 mg/liter) B. licheniformis strains and one erythromycin-sensitive (MIC, 4.0 mg/liter) B. licheniformis strain. Several amino acid changes were present in the translated ermD and ermK nucleotide sequences of the erythromycin-sensitive strain, which could indicate ErmD and ErmK protein functionalities different from those of the resistance strains. The ermD and ermK genes were localized on an 11.4-kbp plasmid. All of the B. sonorensis strains harbored the bacitracin synthetase gene, bacA, and the transporter gene bcrA, which correlated with their observed resistance to bacitracin. Bacitracin was produced by all the investigated species strains (28%), as determined by ultra-high-definition quadrupole time-of-flight liquid chromatography-mass spectrometry (UHD-QTOF LC/MS). The present study has revealed species-specific variations in the antimicrobial susceptibilities of Bacillus spp. and provides new information on MIC values, as well as the occurrence of resistance genes in Bacillus spp., including the newly described species B. sonorensis.
Collapse
|
21
|
Kaboré D, Thorsen L, Nielsen DS, Berner TS, Sawadogo-Lingani H, Diawara B, Dicko MH, Jakobsen M. Bacteriocin formation by dominant aerobic sporeformers isolated from traditional maari. Int J Food Microbiol 2011; 154:10-8. [PMID: 22240061 DOI: 10.1016/j.ijfoodmicro.2011.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/28/2011] [Accepted: 12/04/2011] [Indexed: 11/16/2022]
Abstract
The antimicrobial activity of 8 Bacillus spp. and 2 Lysinibacillus spp. representing the predominant aerobic sporeformers during traditional maari fermentations, a traditional fermented baobab seeds product from Burkina Faso, was investigated. The antimicrobial activity was assessed against a total of 31 indicator organisms representing various Gram-negative and positive pathogens. The screening showed that 3 Bacillus subtilis strains (B3, B122 and B222) in particular had antimicrobial activity against some Gram-positive organisms and were selected for further studies. It was found that the antimicrobial substances produced were heat stable, in-sensitive to catalase, sensitive to protease and trypsin but resistant to the proteolytic action of papain and proteinase K and equally active at pH values ranging from 3 to 11. Bacteriocin secretion started in late exponential growth phase and maximum activity was detected during the stationary growth phase. The production of bacteriocin by B. subtilis B3, B122 and B222 was dependent on the aeration conditions. Maximum production of bacteriocin was observed under reduced aeration. Specific primers were used to screen isolates B3, B122 and B222 for genes involved in the synthesis of the bacteriocins subtilosin A, subtilin, sublancin and ericin. Amplicons of the expected sizes were detected for iywB, sboA, sboX, albA and spaS involved in the biosynthesis of subtilosin and subtilin, respectively. The translated nucleotide sequences had 100% identity to the YiwB, SboX and SboA amino acid sequences of the subtilosin A producing B. subtilis subsp. subtilis strain 168. Interestingly there was a 3 amino acid deletion at the N-terminal part of AlbA in B3, B122 and B222 that probably alters the activity of this enzyme. Analysis of the spaS gene sequences of B3, B122 and B222, encoding a subtilin precursor peptide, showed that the translated nucleotide sequence had 98% identity with the corresponding SpaS amino acid sequence of subtilin producing B. subtilis subsp. spizizenii strain ATCC6633.
Collapse
Affiliation(s)
- Donatien Kaboré
- Food Technology Department (DTA/IRSAT/CNRST), Ouagadougou 03BP7047, Burkina Faso
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Jeyaram K, Romi W, Singh TA, Adewumi GA, Basanti K, Oguntoyinbo FA. Distinct differentiation of closely related species of Bacillus subtilis group with industrial importance. J Microbiol Methods 2011; 87:161-4. [PMID: 21889958 DOI: 10.1016/j.mimet.2011.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
PCR amplification of 16S rRNA gene by universal primers followed by restriction fragment length polymorphism analysis using RsaI, CfoI and HinfI endonucleases, distinctly differentiated closely related Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus from Bacillus subtilis sensu stricto. This simple, economical, rapid and reliable protocol could be an alternative to misleading phenotype-based grouping of these closely related species.
Collapse
Affiliation(s)
- Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development, Takyelpat Institutional Area, Imphal-795001, Manipur, India.
| | | | | | | | | | | |
Collapse
|