1
|
Hajar-Azhari S, Daud N, Muhialdin BJ, Joghee N, Kadum H, Meor Hussin AS. Lacto-fermented garlic sauce improved the quality and extended the shelf life of lamb meat under the chilled condition. Int J Food Microbiol 2023; 395:110190. [PMID: 37030193 DOI: 10.1016/j.ijfoodmicro.2023.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/10/2023]
Abstract
This study evaluated the potential of fermented garlic as a marinated lamb sauce ingredient to improve the quality and shelf life of chilled lamb. Garlic was subjected to Lacto-fermentation for 72 h at 37 °C using Lacticaseibacillus casei. The 1H NMR metabolomics profile showed the presence of eight amino acids and five organic acids in fermented garlic, indicating the attribution to the antioxidant and antimicrobial activities. The FRAP and DPPH assays of fermented garlic revealed antioxidant activities of 0.45 ± 0.09 mmol/100 g DW and 93.85 ± 0.02 %, respectively. Meanwhile, fermented garlic inhibited the growth of Escherichia coli (95 %), Staphylococcus aureus (99 %) and Salmonella Typhimurium (98 %). When fermented garlic was added to the marinade sauce, it successfully reduced the microbial load of lamb meat by 0.5 log CFU/g after 3 days of storage. There were no significant differences in color between the control and marinated lamb after 3 days of marinating in a sauce formulated with fermented garlic. Furthermore, marinated lamb significantly improved water-holding capacity, texture, juiciness, and overall acceptance. These findings indicated a potential addition of fermented garlic in marinade lamb sauce recipes to improve the quality and safety of meat products.
Collapse
Affiliation(s)
- Siti Hajar-Azhari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nuraldayana Daud
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Belal J Muhialdin
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, USA
| | - Naadjidah Joghee
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Hana Kadum
- College of Science, Biology Department (Biotechnology), Al-Muthana University, Al-Muthana, Iraq
| | - Anis Shobirin Meor Hussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Selangor, Malaysia.
| |
Collapse
|
2
|
Substrate control of sulphur utilisation and microbial stoichiometry in soil: Results of 13C, 15N, 14C, and 35S quad labelling. THE ISME JOURNAL 2021; 15:3148-3158. [PMID: 33976391 PMCID: PMC8528905 DOI: 10.1038/s41396-021-00999-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 02/03/2023]
Abstract
Global plant sulphur (S) deficiency is increasing because of a reduction in sulphate-based fertiliser application combined with continuous S withdrawal during harvest. Here, we applied 13C, 15N, 14C, and 35S quad labelling of the S-containing amino acids cysteine (Cys) and methionine (Met) to understand S cycling and microbial S transformations in the soil. The soil microorganisms absorbed the applied Cys and Met within minutes and released SO42- within hours. The SO42- was reutilised by the MB within days. The initial microbial utilisation and SO42- release were determined by amino acid structure. Met released 2.5-fold less SO42- than Cys. The microbial biomass retained comparatively more C and S from Met than Cys. The microorganisms decomposed Cys to pyruvate and H2S whereas they converted Met to α-ketobutyrate and S-CH3. The microbial stoichiometries of C, N, and S derived from Cys and Met were balanced after 4 d by Cys-derived SO42- uptake and Met-derived CO2 release. The microbial C:N:S ratio dynamics showed rapid C utilisation and loss, stable N levels, and S accumulation. Thus, short-term organic S utilisation by soil microorganisms is determined by amino acid structure whilst long-term organic S utilisation by soil microorganisms is determined by microbially controlled stoichiometry.
Collapse
|
3
|
Suh SH, Kim MK. Microbial communities related to sensory characteristics of commercial drinkable yogurt products in Korea. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Valorization of Nile tilapia (Oreochromis niloticus) fish head for a novel fish sauce by fermentation with selected lactic acid bacteria. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109539] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Gómez de Cadiñanos LP, García-Cayuela T, Martínez-Cuesta MC, Peláez C, Requena T. Expression of amino acid converting enzymes and production of volatile compounds by Lactococcus lactis IFPL953. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Yang Q, Wang L, Zhou L, Yang Z, Zhou Q, Huang X. The glucosinolate regulation in plant: A new view on lanthanum stimulating the growth of plant. J RARE EARTH 2019. [DOI: 10.1016/j.jre.2018.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
McAuliffe O, Kilcawley K, Stefanovic E. Symposium review: Genomic investigations of flavor formation by dairy microbiota. J Dairy Sci 2018; 102:909-922. [PMID: 30343908 DOI: 10.3168/jds.2018-15385] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/24/2018] [Indexed: 01/15/2023]
Abstract
Flavor is one of the most important attributes of any fermented dairy product. Dairy consumers are known to be willing to experiment with different flavors; thus, many companies producing fermented dairy products have looked at culture manipulation as a tool for flavor diversification. The development of flavor is a complex process, originating from a combination of microbiological, biochemical, and technological aspects. A key driver of flavor is the enzymatic activities of the deliberately inoculated starter cultures, in addition to the environmental or "nonstarter" microbiota. The contribution of microbial metabolism to flavor development in fermented dairy products has been exploited for thousands of years, but the availability of the whole genome sequences of the bacteria and yeasts involved in the fermentation process and the possibilities now offered by next-generation sequencing and downstream "omics" technologies is stimulating a more knowledge-based approach to the selection of desirable cultures for flavor development. By linking genomic traits to phenotypic outputs, it is now possible to mine the metabolic diversity of starter cultures, analyze the metabolic routes to flavor compound formation, identify those strains with flavor-forming potential, and select them for possible commercial application. This approach also allows for the identification of species and strains not previously considered as potential flavor-formers, the blending of strains with complementary metabolic pathways, and the potential improvement of key technological characteristics in existing strains, strains that are at the core of the dairy industry. An in-depth knowledge of the metabolic pathways of individual strains and their interactions in mixed culture fermentations can allow starter blends to be custom-made to suit industry needs. Applying this knowledge to starter culture research programs is enabling research and development scientists to develop superior starters, expand flavor profiles, and potentially develop new products for future market expansion.
Collapse
Affiliation(s)
- Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996.
| | - Kieran Kilcawley
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - Ewelina Stefanovic
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| |
Collapse
|
8
|
Comparative genomic and metabolic analysis of three Lactobacillus paracasei cheese isolates reveals considerable genomic differences in strains from the same niche. BMC Genomics 2018; 19:205. [PMID: 29554864 PMCID: PMC5859408 DOI: 10.1186/s12864-018-4586-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Strains of Lactobacillus paracasei are present in many diverse environments, including dairy and plant materials and the intestinal tracts of humans and animals. Their adaptation to various niches is correlated to intra-species diversity at the genomic and metabolic level. In this study, we compared the genome sequences of three L. paracasei strains isolated from mature Cheddar cheeses, two of which (DPC4206 and DPC4536) shared the same genomic fingerprint by PFGE, but demonstrated varying metabolic capabilities. Results Genome sizes varied from 2.9 Mbp for DPC2071, to 3.09 Mbp for DPC4206 and 3.08 Mpb for DPC4536. The presence of plasmids was a distinguishing feature between the strains with strain DPC2071 possessing an unusually high number of plasmids (up to 11), while DPC4206 had one plasmid and DPC4536 harboured no plasmids. Each of the strains possessed specific genes not present in the other two analysed strains. The three strains differed in their abundance of sugar-converting genes, and in the types of sugars that could be used as energy sources. Genes involved in the metabolism of sugars not usually connected with the dairy niche, such as myo-inositol and pullulan were also detected, but strains did not utilise these sugars. The genetic content of the three strains differed in regard to specific genes for arginine and sulfur-containing amino acid metabolism and genes contributing to resistance to heavy metal ions. In addition, variability in the presence of phage remnants and phage protection systems was evident. Conclusions The findings presented in this study confirm a considerable level of heterogeneity of Lactobacillus paracasei strains, even between strains isolated from the same niche.
Collapse
|
9
|
Chen C, Zhao S, Hao G, Yu H, Tian H, Zhao G. Role of lactic acid bacteria on the yogurt flavour: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1295988] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P.R. China
| | - Shanshan Zhao
- College of Agriculture, Hebei University of Engineering, Handan, P.R. China
| | - Guangfei Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, P.R. China
- College of Agriculture, Hebei University of Engineering, Handan, P.R. China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P.R. China
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P.R. China
| | - Guozhong Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, P.R. China
| |
Collapse
|
10
|
Allegrini A, Astegno A, La Verde V, Dominici P. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications. J Biochem 2017; 161:349-360. [PMID: 28003427 DOI: 10.1093/jb/mvw079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/17/2016] [Indexed: 01/07/2023] Open
Abstract
Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours.
Collapse
|
11
|
CysK from Lactobacillus casei encodes a protein with O-acetylserine sulfhydrylase and cysteine desulfurization activity. Appl Microbiol Biotechnol 2011; 94:1209-20. [PMID: 22113557 DOI: 10.1007/s00253-011-3677-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
Abstract
A gene encoding an O-acetyl-L-serine sulfhydrylase (cysK) was cloned from Lactobacillus casei FAM18110 and expressed in Escherichia coli. The purified recombinant enzyme synthesized cysteine from sulfide and O-acetyl-L-serine at pH 5.5 and pH 7.4. At pH 7.4, the apparent K(M) for O-acetyl-L-serine (OAS) and sulfide were 0.6 and 6.7 mM, respectively. Furthermore, the enzyme showed cysteine desulfurization activity in the presence of dithiothreitol at pH 7.5, but not at pH 5.5. The apparent K(M) for L-cysteine was 0.7 mM. The synthesis of cystathionine from homocysteine and serine or OAS was not observed. When expressed in a cysMK mutant of Escherichia coli, the cloned gene complemented the cysteine auxotrophy of the mutant. These findings suggested that the gene product is mainly involved in cysteine biosynthesis in L. casei. Quantitative real-time PCR and a mass spectrometric assay based on selected reaction monitoring demonstrated that L. casei FAM18110 is constitutively overexpressing cysK.
Collapse
|