1
|
Leng J, Yu L, Dai Y, Leng Y, Wang C, Chen Z, Wisniewski M, Wu X, Liu J, Sui Y. Recent advances in research on biocontrol of postharvest fungal decay in apples. Crit Rev Food Sci Nutr 2022; 63:10607-10620. [PMID: 35608023 DOI: 10.1080/10408398.2022.2080638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apple is the largest fruit crop produced in temperate regions and is a popular fruit worldwide. It is, however, susceptible to a variety of postharvest fungal pathogens, including Penicillium expansum, Botrytis cinerea, Botryosphaeria dothidea, Monilia spp., and Alternaria spp. Decays resulting from fungal infections severely reduce apple quality and marketable yield. Biological control utilizing bacterial and fungal antagonists is an eco-friendly and effective method of managing postharvest decay in horticultural crops. In the current review, research on the pathogenesis of major decay fungi and isolation of antagonists used to manage postharvest decay in apple is presented. The mode of action of postharvest biocontrol agents (BCAs), including recent molecular and genomic studies, is also discussed. Recent research on the apple microbiome and its relationship to disease management is highlighted, and the use of additives and physical treatments to enhance biocontrol efficacy of BCAs is reviewed. Biological control is a critical component of an integrated management system for the sustainable approaches to apple production. Additional research will be required to explore the feasibility of developing beneficial microbial consortia and novel antimicrobial compounds derived from BCAs for postharvest disease management, as well as genetic approaches, such as the use of CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Jinsong Leng
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Longfeng Yu
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunan, China
| | - Yuan Dai
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Yan Leng
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunan, China
| | - Chaowen Wang
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, Yunan, China
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xuehong Wu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jia Liu
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| | - Yuan Sui
- Chongqing University of Arts and Sciences, Yongchuan, Chongqing, China
| |
Collapse
|
2
|
Dhanasekaran S, Yang Q, Godana EA, Liu J, Li J, Zhang H. Trehalose supplementation enhanced the biocontrol efficiency of Sporidiobolus pararoseus Y16 through increased oxidative stress tolerance and altered transcriptome. PEST MANAGEMENT SCIENCE 2021; 77:4425-4436. [PMID: 33987938 DOI: 10.1002/ps.6477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In the process of biological control, the antagonistic yeasts contend with various stresses that negatively influence yeasts' biocontrol efficiency. In the current study, we investigated the effect of trehalose supplementation on the biocontrol efficiency and oxidative stress tolerance of Sporidiobolus pararoseus Y16. RESULTS S. pararoseus Y16, an antagonistic yeast cultured in trehalose supplemented medium, exhibited better biocontrol efficiency against Penicillium expansum and Aspergillus tubingensis in table grapes. Trehalose-treated S. pararoseus Y16 cells showed good proliferation efficiency and oxidative stress tolerance than untreated cells. Increased β-1,3-glucanase, catalase, superoxide dismutase activity, and low protein carbonylation were observed in trehalose-amended S. pararoseus Y16 upon H2 O2 exposure. The RNA sequencing results indicated that trehalose significantly altered the transcriptome of S. pararoseus Y16. The GO, KEGG, and COG annotations revealed that the differentially regulated genes corresponded to the various biological process of the yeast. CONCLUSION Our findings suggested that trehalose use could enhance the biocontrol efficiency and oxidative stress tolerance of S. pararoseus Y16. Trehalose supplementation altered the transcriptome of S. pararoseus Y16, particularly the genes that correspond to amino acid metabolism, nucleotide metabolism, and protein modification. Thereby the oxidative stress tolerance and biological control efficiency of S. pararoseus Y16 was enhanced by trehalose. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Esa A Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jizhan Liu
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jun Li
- Analysis & Testing Center of Jiangsu University, Zhenjiang, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
3
|
Zheng X, Jiang H, Silvy EM, Zhao S, Chai X, Wang B, Li Z, Bi Y, Prusky D. Candida Oleophila Proliferated and Accelerated Accumulation of Suberin Poly Phenolic and Lignin at Wound Sites of Potato Tubers. Foods 2021; 10:foods10061286. [PMID: 34199817 PMCID: PMC8230253 DOI: 10.3390/foods10061286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Candida oleophila is a type of biocontrol yeast offering effective postharvest disease control. To the best of our knowledge, the effect of C. oleophila upon the healing of tubers is yet to be studied. The present study addresses the existing knowledge gap by investigating the effect of C. oleophila on wound healing in potato tubers. The results show that C. oleophila colonized and proliferated at the wound sites during the early and intermediate stages of healing. In addition, C. oleophila reduced weight loss of wounded tubers, decreased disease index of inoculated tubers with Fusarium sulphureum, and accelerated accumulation of suberin poly phenolic (SPP) and lignin at wound sites. C. oleophila activated phenylpropanoid metabolism and increased the content of SPP monomers, total phenol, flavonoids, and lignin. Furthermore, the yeast increased H2O2 content as well as peroxidase activity.
Collapse
Affiliation(s)
- Xiaoyuan Zheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (H.J.); (E.M.S.); (S.Z.); (X.C.); (B.W.); (Z.L.); (D.P.)
| | - Hong Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (H.J.); (E.M.S.); (S.Z.); (X.C.); (B.W.); (Z.L.); (D.P.)
| | - Esrat Mahmud Silvy
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (H.J.); (E.M.S.); (S.Z.); (X.C.); (B.W.); (Z.L.); (D.P.)
| | - Shijia Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (H.J.); (E.M.S.); (S.Z.); (X.C.); (B.W.); (Z.L.); (D.P.)
| | - Xiuwei Chai
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (H.J.); (E.M.S.); (S.Z.); (X.C.); (B.W.); (Z.L.); (D.P.)
| | - Bin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (H.J.); (E.M.S.); (S.Z.); (X.C.); (B.W.); (Z.L.); (D.P.)
| | - Zhicheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (H.J.); (E.M.S.); (S.Z.); (X.C.); (B.W.); (Z.L.); (D.P.)
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (H.J.); (E.M.S.); (S.Z.); (X.C.); (B.W.); (Z.L.); (D.P.)
- Correspondence: ; Tel.: +86-931-7631113
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (X.Z.); (H.J.); (E.M.S.); (S.Z.); (X.C.); (B.W.); (Z.L.); (D.P.)
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| |
Collapse
|
4
|
Zhang LB, Qiu TT, Guan Y, Huang ZH, Ye XY. Analyses of transcriptomics and metabolomics reveal pathway of vacuolar Sur7 contributed to biocontrol potential of entomopathogenic Beauveria bassiana. J Invertebr Pathol 2021; 181:107564. [PMID: 33689762 DOI: 10.1016/j.jip.2021.107564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 01/21/2023]
Abstract
Beauveria bassiana is a critical entomopathogenic fungus for pest biocontrol, whose efficiency depends on fungal development and stress resistance. Unlike its revealed location in plasma membrane patches in other organisms, B. bassiana Sur7 specifically localized in vacuoles. This vacuolar Sur7 was previously demonstrated to affect stress tolerance, hyphal development and virulence. There, however, remain more mechanistic details to be explored. In this study, transcriptomics and metabolomics were applied to investigate the mechanism of vacuolar Sur7. Analyses of transcriptomics and metabolomics displayed many differentially expressed genes and abundant metabolites in response to Sur7 loss, respectively. Together with genes associated with vacuolar biofunction (including transportation and hydrolysis), the altered metabolites contributed to cell wall construction and stress resistance. Particularly, an N-acetylglucosamine-associated Brg1/Nrg1 pathway was enriched and partially affected by Sur7. Absence of Sur7 changed the expression level of Brg1/Nrg1 pathway-related transcript factors, which interfered with downstream phenotype of sporulation. In addition, Sur7 was involved in the accumulation of sphingoid bases, which may affect sphingolipid-related signaling pathway. Although experimental evidence is further required, our studies provide a preliminary framework for future exploring the regulatory mechanism of Sur7, and give a new version of metabolic agency connecting Sur7 and downstream signaling pathway.
Collapse
Affiliation(s)
- Long-Bin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Ting-Ting Qiu
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yi Guan
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhi-Hong Huang
- Chemical Engineering Institution, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xiu-Yun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
5
|
The Antiaging Effect of Active Fractions and Ent-11α-Hydroxy-15-Oxo-Kaur-16-En-19-Oic Acid Isolated from Adenostemma lavenia (L.) O. Kuntze at the Cellular Level. Antioxidants (Basel) 2020; 9:antiox9080719. [PMID: 32784463 PMCID: PMC7464069 DOI: 10.3390/antiox9080719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background: The extract of Adenostemma lavenia (L.) O. Kuntze leaves has anti-inflammatory activities and is used as a folk medicine to treat patients with hepatitis and pneumonia in China and Taiwan. The diterpenoid ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid (11αOH-KA) is the major ingredient in the extract and has wide-spectrum biological activities, such as antitumor and antimelanogenic activities, as well as anti-inflammatory activity. However, the physical and biological properties of this compound as an antioxidant or antiaging agent have not been reported yet. Methods: In addition to in vitro assays, we monitored antioxidative and antiaging signals in Schizosaccharomyces pombe (yeast) and mouse melanoma B16F10 cells. Results: A. lavenia water and chloroform fractions showed antioxidant properties in vitro. The A. lavenia extracts and 11αOH-KA conferred resistance to H2O2 to S. pombe and B16F10 cells and extended the yeast lifespan in a concentration-dependent manner. These materials maintained the yeast mitochondrial activity, even in a high-glucose medium, and induced an antioxidant gene program, the transcriptional factor pap1+ and its downstream ctt1+. Accordingly, 11αOH-KA activated the antioxidative transcription factor NF-E2-related factor 2, NRF2, the mammalian ortholog of pap1+, in B16F10 cells, which was accompanied by enhanced hemeoxygenase expression levels. These results suggest that 11αOH-KA and A. lavenia extracts may protect yeast and mammalian cells from oxidative stress and aging. Finally, we hope that these materials could be helpful in treating COVID-19 patients, because A. lavenia extracts and NRF2 activators have been reported to alleviate the symptoms of pneumonia in model animals.
Collapse
|
6
|
Yu L, Qiao N, Zhao J, Zhang H, Tian F, Zhai Q, Chen W. Postharvest control of Penicillium expansum in fruits: A review. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100633] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Ngolong Ngea GL, Yang Q, Castoria R, Zhang X, Routledge MN, Zhang H. Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Compr Rev Food Sci Food Saf 2020; 19:2447-2472. [PMID: 33336983 DOI: 10.1111/1541-4337.12599] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023]
Abstract
Patulin (PAT) is a mycotoxin that can contaminate many foods and especially fruits and fruit-based products. Therefore, accurate and effective testing is necessary to enable producers to comply with regulations and promote food safety. Traditional approaches involving the use of chemical compounds or physical treatments in food have provided practical methods that have been used to date. However, growing concerns about environmental and health problems associated with these approaches call for new alternatives. In contrast, recent advances in biotechnology have revolutionized the understanding of living organisms and brought more effective biological tools. This review, therefore, focuses on the study of biotechnology approaches for the detection, control, and mitigation of PAT in food. Future aspects of biotechnology development to overcome the food safety problem posed by PAT were also examined. We find that biotechnology advances offer novel, more effective, and environmental friendly approaches for the control and elimination of PAT in food compared to traditional methods. Biosensors represent the future of PAT detection and use biological tools such as aptamer, enzyme, and antibody. PAT prevention strategies include microbial biocontrol, the use of antifungal biomolecules, and the use of microorganisms in combination with antifungal molecules. PAT detoxification aims at the breakdown and removal of PAT in food by using enzymes, microorganisms, and various adsorbent biopolymers. Finally, biotechnology advances will be dependent on the understanding of fundamental biology of living organisms regarding PAT synthesis and resistance mechanisms.
Collapse
Affiliation(s)
- Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Institute of Fisheries Sciences, University of Douala, Douala, Cameroon
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Raffaello Castoria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Michael N Routledge
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Improving Regulation of Enzymatic and Non-Enzymatic Antioxidants and Stress-Related Gene Stimulation in Cucumber mosaic cucumovirus-Infected Cucumber Plants Treated with Glycine Betaine, Chitosan and Combination. Molecules 2020; 25:molecules25102341. [PMID: 32429524 PMCID: PMC7288169 DOI: 10.3390/molecules25102341] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cucumber mosaic cucumovirus (CMV) is a deadly plant virus that results in crop-yield losses with serious economic consequences. In recent years, environmentally friendly components have been developed to manage crop diseases as alternatives to chemical pesticides, including the use of natural compounds such as glycine betaine (GB) and chitosan (CHT), either alone or in combination. In the present study, the leaves of the cucumber plants were foliar-sprayed with GB and CHT—either alone or in combination—to evaluate their ability to induce resistance against CMV. The results showed a significant reduction in disease severity and CMV accumulation in plants treated with GB and CHT, either alone or in combination, compared to untreated plants (challenge control). In every treatment, growth indices, leaf chlorophylls content, phytohormones (i.e., indole acetic acid, gibberellic acid, salicylic acid and jasmonic acid), endogenous osmoprotectants (i.e., proline, soluble sugars and glycine betaine), non-enzymatic antioxidants (i.e., ascorbic acid, glutathione and phenols) and enzymatic antioxidants (i.e., superoxide dismutase, peroxidase, polyphenol oxidase, catalase, lipoxygenase, ascorbate peroxidase, glutathione reductase, chitinase and β-1,3 glucanase) of virus-infected plants were significantly increased. On the other hand, malondialdehyde and abscisic acid contents have been significantly reduced. Based on a gene expression study, all treated plants exhibited increased expression levels of some regulatory defense genes such as PR1 and PAL1. In conclusion, the combination of GB and CHT is the most effective treatment in alleviated virus infection. To our knowledge, this is the first report to demonstrate the induction of systemic resistance against CMV by using GB.
Collapse
|
9
|
Ming X, Wang Y, Sui Y. Pretreatment of the Antagonistic Yeast, Debaryomyces hansenii, With Mannitol and Sorbitol Improves Stress Tolerance and Biocontrol Efficacy. Front Microbiol 2020; 11:601. [PMID: 32351472 PMCID: PMC7174499 DOI: 10.3389/fmicb.2020.00601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/18/2020] [Indexed: 12/25/2022] Open
Abstract
The effect of exogenous mannitol and sorbitol on the viability of the antagonist yeast, Debaryomyces hansenii, when exposed to oxidative and high-temperature stress was determined. Results indicated that both the 0.1 M mannitol (MT) and 0.1 M sorbitol (ST) treatments improved the tolerance of D. hansenii to subsequent oxidative and high-temperature stress. MT or ST cells had a significantly higher level of cell survival, elevated the gene expression of catalase 1 (CAT1) and copper-zinc superoxide dismutase (SOD1), as well as the corresponding enzyme activity. Treated cells also exhibited a lower accumulation of intracellular reactive oxygen species (ROS), and a higher content of intracellular mannitol and sorbitol relative to non-treated, control yeast cells, when exposed to a subsequent oxidative (30 mM H2O2) or heat (40.5°C) stress for 30 min. Additionally, MT and ST yeast exhibited a higher growth rate in kiwifruit wounds, and a greater ability to inhibit postharvest blue mold (Penicillium expansum) and gray mold (Botrytis cinerea) infections. The present study indicates that increased antioxidant response induced by mannitol and sorbitol in D. hansenii can enhance stress tolerance and biocontrol performance.
Collapse
Affiliation(s)
- Xiaobing Ming
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, China
| | - Yong Wang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
10
|
Nitrogen source-dependent inhibition of yeast growth by glycine and its N-methylated derivatives. Antonie van Leeuwenhoek 2019; 113:437-445. [PMID: 31630298 PMCID: PMC7033051 DOI: 10.1007/s10482-019-01342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/09/2019] [Indexed: 11/15/2022]
Abstract
The effect of nitrogen source on the inhibitory properties of glycine and its N-methylated derivatives N-methylglycine (sarcosine), N,N-dimethylglycine, N,N,N-trimethylglycine (glycine betaine) on yeast growth was investigated. On solid minimal medium, all four glycine species completely or partially inhibited growth of Kluyveromyces lactis, Komagataella pastoris, Ogataea arabinofermentans, Spathaspora passalidarum and Yamadazyma tenuis at concentrations 5–10 mM when 10 mM NH4Cl was the sole source of nitrogen. If NH4Cl was substituted by sodium L-glutamate as the sole source of nitrogen, obvious growth inhibition by glycine and its N-methylated derivatives was generally not observed in any of these species. No obvious growth inhibition by any of the glycine species at a concentration of 10 mM was observed in Cyberlindnera jadinii, Lipomyces starkeyi, Lodderomyces elongisporus, Scheffersomyces stipitis or Yarrowia lipolytica on solid minimal medium irrespective of whether the nitrogen source was NH4Cl or sodium L-glutamate. Growth inhibition assays of K. pastoris in liquid minimal medium supplemented with increasing concentrations of N,N-dimethylglycine demonstrated inhibitory effects for nine tested nitrogen sources. In most cases, N,N-dimethylglycine supplementation caused a decrease in growth efficiency that appeared to be proportional to the concentration of N,N-dimethylglycine. The biological relevance of these results is discussed.
Collapse
|
11
|
Zheng F, Zhang W, Sui Y, Ding R, Yi W, Hu Y, Liu H, Zhu C. Sugar Protectants Improve the Thermotolerance and Biocontrol Efficacy of the Biocontrol Yeast, Candida oleophila. Front Microbiol 2019; 10:187. [PMID: 30800113 PMCID: PMC6376898 DOI: 10.3389/fmicb.2019.00187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/23/2019] [Indexed: 11/22/2022] Open
Abstract
A variety of sugar compounds have been used as additives to protect various biocontrol yeasts from adverse environmental stresses. However, studies on maltose and lactose as sugar protectants are limited, and their protective effect is not clear. In the present study, exposure of the biocontrol yeast Candida oleophila cells to 45°C for 10 min, while immersed in either 5 or 10% (w/v) maltose or lactose, provided a significant protective effect. The addition of maltose and lactose significantly enhanced enzyme activity and gene expression of catalase, thioredoxin reductase, and glutathione reductase, relative to cells that have been immersed in sterile distilled water (controls) exposed to 45°C. In addition, C. oleophila cells suspended in maltose and lactose solutions also exhibited higher viability and ATP levels, relative to control cells. Notably, the biocontrol efficacy of C. oleophila against postharvest diseases of apple fruit was maintained after the yeast was exposed to the high temperature treatment while immersed in maltose and lactose solutions. These results demonstrate the potential of maltose and lactose as sugar protectants for biocontrol agent against heat stress.
Collapse
Affiliation(s)
- Fangliang Zheng
- School of Life Science, Liaoning University, Shenyang, China
| | - Weiwei Zhang
- School of Life Science, Liaoning University, Shenyang, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Ruihan Ding
- School of Life Science, Liaoning University, Shenyang, China
| | - Wenfu Yi
- School of Life Science, Liaoning University, Shenyang, China
| | - Yuanyuan Hu
- School of Life Science, Liaoning University, Shenyang, China
| | - Hongsheng Liu
- School of Life Science, Liaoning University, Shenyang, China
| | - Chunyu Zhu
- School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
12
|
Metabolic responses of Beauveria bassiana to hydrogen peroxide-induced oxidative stress using an LC-MS-based metabolomics approach. J Invertebr Pathol 2016; 137:1-9. [DOI: 10.1016/j.jip.2016.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/23/2022]
|
13
|
Sui Y, Wisniewski M, Droby S, Liu J. Responses of yeast biocontrol agents to environmental stress. Appl Environ Microbiol 2015; 81:2968-75. [PMID: 25710368 PMCID: PMC4393439 DOI: 10.1128/aem.04203-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biological control of postharvest diseases, utilizing wild species and strains of antagonistic yeast species, is a research topic that has received considerable attention in the literature over the past 30 years. In principle, it represents a promising alternative to chemical fungicides for the management of postharvest decay of fruits, vegetables, and grains. A yeast-based biocontrol system is composed of a tritrophic interaction between a host (commodity), a pathogen, and a yeast species, all of which are affected by environmental factors such as temperature, pH, and UV light as well as osmotic and oxidative stresses. Additionally, during the production process, biocontrol agents encounter various severe abiotic stresses that also impact their viability. Therefore, understanding the ecological fitness of the potential yeast biocontrol agents and developing strategies to enhance their stress tolerance are essential to their efficacy and commercial application. The current review provides an overview of the responses of antagonistic yeast species to various environmental stresses, the methods that can be used to improve stress tolerance and efficacy, and the related mechanisms associated with improved stress tolerance.
Collapse
Affiliation(s)
- Yuan Sui
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| | - Michael Wisniewski
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Kearneysville, West Virginia, USA
| | - Samir Droby
- Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Jia Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
14
|
Tao N, Fan F, Jia L, Zhang M. Octanal incorporated in postharvest wax of Satsuma mandarin fruit as a botanical fungicide against Penicillium digitatum. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Liu J, Sui Y, Wisniewski M, Droby S, Liu Y. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 2013; 167:153-60. [DOI: 10.1016/j.ijfoodmicro.2013.09.004] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 01/30/2023]
|