1
|
Li L, Yuan C, Zhang L, Chu R, Yu Q, Cai J, Yang T, Zhang M. The impact of simultaneous inoculation with Torulaspora delbrueckii and Hanseniaspora uvarum combined with Saccharomyces cerevisiae on chemical and sensory quality of Sauvignon blanc wines. Front Microbiol 2024; 15:1413650. [PMID: 39113838 PMCID: PMC11303216 DOI: 10.3389/fmicb.2024.1413650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Non-Saccharomyces yeasts have great potential in improving wine quality, showing personality characteristics, and highlighting the terroir of wine. In this study, we evaluated the impact of simultaneous inoculation with the non-Saccharomyces yeasts Torulaspora delbrueckii or (and) Hanseniaspora uvarum in combination with Saccharomyces cerevisiae (EC1118 or VL3) on the aromatic compounds and sensory quality of Sauvignon blanc wines. The growth of yeast groups in the alcoholic fermentation process was tracked using fluorescence in situ hybridization. The presence of non-Saccharomyces yeast notably impacted the distribution of S. cerevisiae and was related to the species of yeast. The co-fermentation of H. uvarum and S. cerevisiae improved the content of total esters, especially acetate esters. Simultaneous inoculation of T. delbrueckii or (and) H. uvarum significantly increased the content of total terpenes, especially linalool. Similar results were found for some higher alcohols and organic acids. Sensory evaluation showed that the wines mixed fermentation with H. uvarum had significantly tropical fruit aroma characteristics. Citrus and mineral notes, typical aroma characteristics of Sauvignon blanc wine, were enhanced by mixed fermentation strategies with T. delbrueckii or (and) H. uvarum and different S. cerevisiae. Hence, co-fermentation by T. delbrueckii or H. uvarum combined with S. cerevisiae could significantly improve the sensory quality of Sauvignon blanc wine.
Collapse
Affiliation(s)
- Linbo Li
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Chenyang Yuan
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Lei Zhang
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruichao Chu
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Qingquan Yu
- Cofco Great Wall Sanggan Winery (Huailai) Co., Ltd., Huailai, China
| | - Jian Cai
- Yunnan Engineering Research Center of Fruit Wine, QuJing Normal University, Qujing, China
| | - Tianyou Yang
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Mingxia Zhang
- School of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
2
|
Zand E, Froehling A, Schoenher C, Zunabovic-Pichler M, Schlueter O, Jaeger H. Potential of Flow Cytometric Approaches for Rapid Microbial Detection and Characterization in the Food Industry-A Review. Foods 2021; 10:3112. [PMID: 34945663 PMCID: PMC8701031 DOI: 10.3390/foods10123112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
As microbial contamination is persistent within the food and bioindustries and foodborne infections are still a significant cause of death, the detection, monitoring, and characterization of pathogens and spoilage microorganisms are of great importance. However, the current methods do not meet all relevant criteria. They either show (i) inadequate sensitivity, rapidity, and effectiveness; (ii) a high workload and time requirement; or (iii) difficulties in differentiating between viable and non-viable cells. Flow cytometry (FCM) represents an approach to overcome such limitations. Thus, this comprehensive literature review focuses on the potential of FCM and fluorescence in situ hybridization (FISH) for food and bioindustry applications. First, the principles of FCM and FISH and basic staining methods are discussed, and critical areas for microbial contamination, including abiotic and biotic surfaces, water, and air, are characterized. State-of-the-art non-specific FCM and specific FISH approaches are described, and their limitations are highlighted. One such limitation is the use of toxic and mutagenic fluorochromes and probes. Alternative staining and hybridization approaches are presented, along with other strategies to overcome the current challenges. Further research needs are outlined in order to make FCM and FISH even more suitable monitoring and detection tools for food quality and safety and environmental and clinical approaches.
Collapse
Affiliation(s)
- Elena Zand
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Antje Froehling
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Christoph Schoenher
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Marija Zunabovic-Pichler
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Oliver Schlueter
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Henry Jaeger
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| |
Collapse
|
3
|
Wine Spoilage Control: Impact of Saccharomycin on Brettanomyces bruxellensis and Its Conjugated Effect with Sulfur Dioxide. Microorganisms 2021; 9:microorganisms9122528. [PMID: 34946131 PMCID: PMC8705515 DOI: 10.3390/microorganisms9122528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
The yeast Brettanomyces bruxellensis is one of the most dangerous wine contaminants due to the production of phenolic off-flavors such as 4-ethylphenol. This microbial hazard is regularly tackled by addition of sulfur dioxide (SO2). Nevertheless, B. bruxellensis is frequently found at low levels (ca 103 cells/mL) in finished wines. Besides, consumers health concerns regarding the use of sulfur dioxide encouraged the search for alternative biocontrol measures. Recently, we found that Saccharomyces cerevisiae secretes a natural biocide (saccharomycin) that inhibits the growth of different B. bruxellensis strains during alcoholic fermentation. Here we investigated the ability of S. cerevisiae CCMI 885 to prevent B. bruxellensis ISA 2211 growth and 4-ethylphenol production in synthetic and true grape must fermentations. Results showed that B. bruxellensis growth and 4-ethylphenol production was significantly inhibited in both media, although the effect was more pronounced in synthetic grape must. The natural biocide was added to a simulated wine inoculated with 5 × 102 cells/mL of B. bruxellensis, which led to loss of culturability and viability (100% dead cells at day-12). The conjugated effect of saccharomycin with SO2 was evaluated in simulated wines at 10, 12, 13 and 14% (v/v) ethanol. Results showed that B. bruxellensis proliferation in wines at 13 and 14% (v/v) ethanol was completely prevented by addition of 1.0 mg/mL of saccharomycin with 25 mg/L of SO2, thus allowing to significantly reduce the SO2 levels commonly used in wines (150–200 mg/L).
Collapse
|
4
|
Gnoinski GB, Schmidt SA, Close DC, Goemann K, Pinfold TL, Kerslake FL. Novel Methods to Manipulate Autolysis in Sparkling Wine: Effects on Yeast. Molecules 2021; 26:E387. [PMID: 33450966 PMCID: PMC7828459 DOI: 10.3390/molecules26020387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/02/2022] Open
Abstract
Sparkling wine made by the traditional method (Méthode Traditionelle) develops a distinct and desirable flavour and aroma profile attributed to proteolytic processes during prolonged ageing on lees. Microwave, ultrasound and addition of β-glucanase enzymes were applied to accelerate the disruption of Saccharomyces cerevisiae, and added to the tirage solution for secondary fermentation in traditional sparkling winemaking. Scanning electron microscopy and flow cytometry analyses were used to observe and describe yeast whole-cell anatomy, and cell integrity and structure via propidium iodide (PI) permeability after 6-, 12- and 18-months post-tirage. Treatments applied produced features on lees that were distinct from that of the untreated control yeast. Whilst control yeast displayed budding cells (growth features) with smooth, cavitated and flat external cell appearances; microwave treated yeast cells exhibited modifications like 'doughnut' shapes immediately after treatment (time 0). Similar 'doughnut'-shaped and 'pitted/porous' cell features were observed on progressively older lees from the control. Flow cytometry was used to discriminate yeast populations; features consistent with cell disruption were observed in the microwave, ultrasound and enzyme treatments, as evidenced by up to 4-fold increase in PI signal in the microwave treatment. Forward and side scatter signals reflected changes in size and structure of yeast cells, in all treatments applied. When flow cytometry was interpreted alongside the scanning electron microscopy images, bimodal populations of yeast cells with low and high PI intensities were revealed and distinctive 'doughnut'-shaped cell features observed in association with the microwave treatment only at tirage, that were not observed until 12 months wine ageing in older lees from the control. This work offers both a rapid approach to visualise alterations to yeast cell surfaces and a better understanding of the mechanisms of yeast lysis. Microwave, ultrasound or β-glucanase enzymes are tools that could potentially initiate the release of yeast cell compounds into wine. Further investigation into the impact of such treatments on the flavour and aroma profiles of the wines through sensory evaluation is warranted.
Collapse
Affiliation(s)
- Gail B. Gnoinski
- Horticulture Centre, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia; (D.C.C.); (F.L.K.)
| | - Simon A. Schmidt
- The Australian Wine Research Institute, Glen Osmond, South Australia 5064, Australia;
| | - Dugald C. Close
- Horticulture Centre, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia; (D.C.C.); (F.L.K.)
| | - Karsten Goemann
- Central Science Laboratory, University of Tasmania, Sandy Bay, Tasmania 7005, Australia;
| | - Terry L. Pinfold
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia;
| | - Fiona L. Kerslake
- Horticulture Centre, Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005, Australia; (D.C.C.); (F.L.K.)
| |
Collapse
|
5
|
Immobilization of Phosphatidylserine by Ethanol and Lysozyme on the Cell Surface for Evaluation of Apoptosis-Like Decay in Activated-Sludge Bacteria. Appl Environ Microbiol 2020; 86:AEM.00345-20. [PMID: 32414801 DOI: 10.1128/aem.00345-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/30/2020] [Indexed: 01/18/2023] Open
Abstract
Accurate determination of microbial viability can be crucial in microbe-dominated biosystems. However, the identification of metabolic decay in bacterial cells can be elaborate and difficult. We sought to identify apoptosis-like bacterial processes by using annexin V-fluorescein isothiocyanate (FITC) (AVF), a probe typically used to stain phosphatidylserine (PS) on exposed cell membranes. The bacterial cell wall provides a barrier that is responsible for low efficiency of direct PS staining of decayed bacterial cells. This can be overcome by pretreatment of the bacteria with 70% ethanol, which fixates the bacteria and preserves the PS status, combined with lysozyme treatment to hydrolyze the cell wall. That treatment improved the efficiency of AVF staining considerably, as shown for pure strains of an Ochrobactrum sp. and a Micrococcus sp. Using this method, decayed bacterial cells (induced by starvation) were more strongly stained, indicating externalization of PS to a greater extent than seen for cells harvested at logarithmic growth. A multispecies microbial sludge was artificially decayed by heat treatment or alternating anoxic-oxic treatment, which also induced increased AVF staining, again presumably via decay-related PS externalization. The method developed proved to be efficient for identification of bacterial decay and has potential for the evaluation of multispecies bacterial samples from sources like soil matrix, bioaerosol, and activated sludge.IMPORTANCE Since the externalization of phosphatidylserine (PS) is considered a crucial characteristic of apoptosis, we sought to identify apoptosis-like decay in bacterial cells by PS staining using AVF. We show that this is possible, provided the bacteria are pretreated with ethanol plus lysozyme to remove a physical staining barrier and preserve the original, decay-related externalization of PS. Our work suggests that PS externalization occurs in starved bacteria and this can be quantified with AVF staining, providing a measure of bacterial decay. Since PS is the common component of the lipid bilayer in bacterial cell membranes, this approach also has potential for evaluation of cell decay of other bacterial species.
Collapse
|
6
|
Bordet F, Joran A, Klein G, Roullier-Gall C, Alexandre H. Yeast-Yeast Interactions: Mechanisms, Methodologies and Impact on Composition. Microorganisms 2020; 8:E600. [PMID: 32326124 PMCID: PMC7232261 DOI: 10.3390/microorganisms8040600] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
During the winemaking process, alcoholic fermentation is carried out by a consortium of yeasts in which interactions occurs. The consequences of these interactions on the wine matrix have been widely described for several years with the aim of controlling the winemaking process as well as possible. In this review, we highlight the wide diversity of methodologies used to study these interactions, and their underlying mechanisms and consequences on the final wine composition and characteristics. The wide variety of matrix parameters, yeast couples, and culture conditions have led to contradictions between the results of the different studies considered. More recent aspects of modifications in the composition of the matrix are addressed through different approaches that have not been synthesized recently. Non-volatile and volatile metabolomics, as well as sensory analysis approaches are developed in this paper. The description of the matrix composition modification does not appear sufficient to explain interaction mechanisms, making it vital to take an integrated approach to draw definite conclusions on them.
Collapse
Affiliation(s)
- Fanny Bordet
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
- Lallemand SAS, 19, rue des Briquetiers, BP 59, 31702 Blagnac CEDEX, France
| | - Alexis Joran
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Géraldine Klein
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Chloé Roullier-Gall
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Hervé Alexandre
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| |
Collapse
|
7
|
Branco P, Candeias A, Caldeira AT, González-Pérez M. A simple procedure for detecting Dekkera bruxellensis in wine environment by RNA-FISH using a novel probe. Int J Food Microbiol 2020; 314:108415. [PMID: 31707175 DOI: 10.1016/j.ijfoodmicro.2019.108415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022]
Abstract
Dekkera bruxellensis, considered the major microbial contaminant in wine production, produces 4-ethylphenol, a cause of unpleasant odors. Thus, identification of this yeast before wine spoilage is crucial. Although challenging, it could be achieved using a simple technique: RNA-FISH. To reach it is necessary to design probes that allow specific detection/identification of D. bruxellensis among the wine microorganisms and in the wine environment and, if possible, using low formamide concentrations. Therefore, this study was focused on: a) designing a DNA-FISH probe to identify D. bruxellensis that matches these requirements and b) determining the applicability of the RNA-FISH procedure after the end of the alcoholic fermentation and in wine. A novel DNA-FISH D. bruxellensis probe with good performance and specificity was designed. The application of this probe using an in-suspension RNA-FISH protocol (applying only 5% of formamide) allowed the early detection/identification of D. bruxellensis at low cell densities (5 × 102 cell/mL). This was possible by flow cytometry independently of the growth stage of the target cells, both at the end of the alcoholic fermentation and in wine even in the presence of high S. cerevisiae cell densities. Thus, this study aims to contribute to facilitate the identification of D. bruxellensis before wine spoilage occurs, preventing economic losses to the wine industry.
Collapse
Affiliation(s)
- Patrícia Branco
- HERCULES Laboratory, Évora University, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal
| | - António Candeias
- HERCULES Laboratory, Évora University, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; Chemistry Department, School of Sciences and Technology, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Ana Teresa Caldeira
- HERCULES Laboratory, Évora University, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; Chemistry Department, School of Sciences and Technology, Évora University, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Marina González-Pérez
- HERCULES Laboratory, Évora University, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal.
| |
Collapse
|
8
|
Branco P, Candeias A, Caldeira AT, González‐Pérez M. An important step forward for the future development of an easy and fast procedure for identifying the most dangerous wine spoilage yeast, Dekkera bruxellensis, in wine environment. Microb Biotechnol 2019; 12:1237-1248. [PMID: 31197952 PMCID: PMC6801150 DOI: 10.1111/1751-7915.13422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Dekkera bruxellensis is the main reason for spoilage in the wine industry. It renders the products unacceptable leading to large economic losses. Fluorescence In Situ Hybridization (FISH) technique has the potential for allowing its specific detection. Nevertheless, some experimental difficulties can be encountered when FISH technique is applied in the wine environment (e.g. matrix and cells' autofluorescence, fluorophore inadequate selection and probes' low specificity to the target organisms). An easy and fast in-suspension RNA-FISH procedure was applied for the first time for identifying D. bruxellensis in wine. A previously designed RNA-FISH probe to detect D. bruxellensis (26S D. brux.5.1) was used, and the matrix and cells' fluorescence interferences, the influence of three fluorophores in FISH performance and the probe specificity were evaluated. The results revealed that to apply RNA-FISH technique in the wine environment, a red-emitting fluorophore should be used. Good probe performance and specificity were achieved with 25% of formamide. The resulting RNA-FISH protocol was applied in wine samples artificially inoculated with D. bruxellensis. This spoilage microorganism was detected in wine at cell densities lower than those associated with phenolic off-flavours. Thus, the RNA-FISH procedure described in this work represents an advancement to facilitate early detection of the most dangerous wine spoilage yeast and, consequently, to reduce the economic losses caused by this yeast to the wine industry.
Collapse
Affiliation(s)
- Patrícia Branco
- HERCULES LaboratoryÉvora UniversityLargo Marquês de Marialva 87000‐809ÉvoraPortugal
| | - António Candeias
- HERCULES LaboratoryÉvora UniversityLargo Marquês de Marialva 87000‐809ÉvoraPortugal
- Chemistry DepartmentSchool of Sciences and TechnologyÉvora UniversityRua Romão Ramalho 597000‐671ÉvoraPortugal
| | - Ana Teresa Caldeira
- HERCULES LaboratoryÉvora UniversityLargo Marquês de Marialva 87000‐809ÉvoraPortugal
- Chemistry DepartmentSchool of Sciences and TechnologyÉvora UniversityRua Romão Ramalho 597000‐671ÉvoraPortugal
| | | |
Collapse
|
9
|
Seixas I, Barbosa C, Mendes-Faia A, Güldener U, Tenreiro R, Mendes-Ferreira A, Mira NP. Genome sequence of the non-conventional wine yeast Hanseniaspora guilliermondii UTAD222 unveils relevant traits of this species and of the Hanseniaspora genus in the context of wine fermentation. DNA Res 2019; 26:67-83. [PMID: 30462193 PMCID: PMC6379042 DOI: 10.1093/dnares/dsy039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
Hanseanispora species, including H. guilliermondii, are long known to be abundant in wine grape-musts and to play a critical role in vinification by modulating, among other aspects, the wine sensory profile. Despite this, the genetics and physiology of Hanseniaspora species remains poorly understood. The first genomic sequence of a H. guilliermondii strain (UTAD222) and the discussion of its potential significance are presented in this work. Metabolic reconstruction revealed that H. guilliermondii is not equipped with a functional gluconeogenesis or glyoxylate cycle, nor does it harbours key enzymes for glycerol or galactose catabolism or for biosynthesis of biotin and thiamine. Also, no fructose-specific transporter could also be predicted from the analysis of H. guilliermondii genome leaving open the mechanisms underlying the fructophilic character of this yeast. Comparative analysis involving H. guilliermondii, H. uvarum, H. opuntiae and S. cerevisiae revealed 14 H. guilliermondii-specific genes (including five viral proteins and one β-glucosidase). Furthermore, 870 proteins were only found within the Hanseniaspora proteomes including several β-glucosidases and decarboxylases required for catabolism of biogenic amines. The release of H. guilliermondii genomic sequence and the comparative genomics/proteomics analyses performed, is expected to accelerate research focused on Hanseniaspora species and to broaden their application in the wine industry and in other bio-industries in which they could be explored as cell factories.
Collapse
Affiliation(s)
- Isabel Seixas
- WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
| | - Catarina Barbosa
- WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
| | - Arlete Mendes-Faia
- WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
| | - Ulrich Güldener
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Maximus von-Imhof-Forum 3, Freising, Germany
| | - Rogério Tenreiro
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
| | - Ana Mendes-Ferreira
- WM&B—Laboratory of Wine Microbiology & Biotechnology, Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisbon, Portugal
- To whom correspondence should be addressed. Tel. +351218419181. (N.P.M.); Tel. +351 259 350 550. (A.M.-F.)
| | - Nuno P Mira
- Department of Bioengineering, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon, Portugal
- To whom correspondence should be addressed. Tel. +351218419181. (N.P.M.); Tel. +351 259 350 550. (A.M.-F.)
| |
Collapse
|
10
|
Detection and Evaluation of Viable but Non-culturable Escherichia coli O157:H7 Induced by Low Temperature with a BCAC-EMA-Rti-LAMP Assay in Chicken Without Enrichment. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1377-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Morgan SC, Tantikachornkiat M, Scholl CM, Benson NL, Cliff MA, Durall DM. The effect of sulfur dioxide addition at crush on the fungal and bacterial communities and the sensory attributes of Pinot gris wines. Int J Food Microbiol 2018; 290:1-14. [PMID: 30278370 DOI: 10.1016/j.ijfoodmicro.2018.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022]
Abstract
Modern day winemaking often involves the addition of sulfur dioxide (SO2) at crush to act as both an antioxidant and an antimicrobial agent. While the effects of SO2 on microbial communities and particularly on spoilage microorganisms has been well-studied, the advent of culture-independent molecular technologies, such as Illumina sequencing, allows the subject to be re-visited in a new context. High-throughput amplicon sequencing allows for a more thorough evaluation of microbial communities, as thousands of microbial sequences per sample can be identified and even rare microorganisms can be studied. This research investigated whether the addition of different levels of SO2 at crush (0, 20, or 40 mg/L) would affect the composition of fungal and bacterial communities, as well as the sensory attributes of the resulting wines. Samples were taken from uninoculated fermentations of Pinot gris and analyzed via high-throughput amplicon sequencing using the Illumina MiSeq platform. Yeast relative abundance and overall fungal community composition differed among the SO2 additions. Notably, a Hanseniaspora yeast appeared in all treatments and persisted until the end of alcoholic fermentation, although its relative abundance was significantly higher in the fermentations to which low or no SO2 had been added. Two key wine sensory attributes (citrus aroma and pome fruit flavor) differed among the SO2 treatments. This research provides an in-depth look into the fungal and bacterial communities during alcoholic fermentation and gives a better understanding of the microbial community response to SO2 additions during the crush period.
Collapse
Affiliation(s)
- Sydney C Morgan
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada.
| | - Mansak Tantikachornkiat
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Chrystal M Scholl
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Natasha L Benson
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Margaret A Cliff
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 Highway 97, Summerland, British Columbia V0H 1Z0, Canada.
| | - Daniel M Durall
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
12
|
Longin C, Petitgonnet C, Guilloux-Benatier M, Rousseaux S, Alexandre H. La cytométrie appliquée aux mircoorganismes du vin. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170902018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Longin C, Petitgonnet C, Guilloux-Benatier M, Rousseaux S, Alexandre H. Application of flow cytometry to wine microorganisms. Food Microbiol 2016; 62:221-231. [PMID: 27889152 DOI: 10.1016/j.fm.2016.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/20/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Flow cytometry (FCM) is a powerful technique allowing detection and enumeration of microbial populations in food and during food process. Thanks to the fluorescent dyes used and specific probes, FCM provides information about cell physiological state and allows enumeration of a microorganism in a mixed culture. Thus, this technique is increasingly used to quantify pathogen, spoilage microorganisms and microorganisms of interest. Since one decade, FCM applications to the wine field increase greatly to determine population and physiological state of microorganisms performing alcoholic and malolactic fermentations. Wine spoilage microorganisms were also studied. In this review we briefly describe FCM principles. Next, a deep revision concerning enumeration of wine microorganisms by FCM is presented including the fluorescent dyes used and techniques allowing a yeast and bacteria species specific enumeration. Then, the last chapter is dedicated to fluorescent dyes which are used to date in fluorescent microscopy but applicable in FCM. This chapter also describes other interesting "future" techniques which could be applied to study the wine microorganisms. Thus, this review seeks to highlight the main advantages of the flow cytometry applied to wine microbiology.
Collapse
Affiliation(s)
- Cédric Longin
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin, Equipe VAlMiS, rue Claude Ladrey, BP 27877, F-21078 Dijon, France
| | - Clément Petitgonnet
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin, Equipe VAlMiS, rue Claude Ladrey, BP 27877, F-21078 Dijon, France
| | - Michèle Guilloux-Benatier
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin, Equipe VAlMiS, rue Claude Ladrey, BP 27877, F-21078 Dijon, France
| | - Sandrine Rousseaux
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin, Equipe VAlMiS, rue Claude Ladrey, BP 27877, F-21078 Dijon, France
| | - Hervé Alexandre
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; Institut Universitaire de la Vigne et du Vin, Equipe VAlMiS, rue Claude Ladrey, BP 27877, F-21078 Dijon, France
| |
Collapse
|
14
|
Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions. Appl Microbiol Biotechnol 2016; 100:2035-46. [PMID: 26728020 DOI: 10.1007/s00253-015-7255-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
Winemaking, brewing and baking are some of the oldest biotechnological processes. In all of them, alcoholic fermentation is the main biotransformation and Saccharomyces cerevisiae the primary microorganism. Although a wide variety of microbial species may participate in alcoholic fermentation and contribute to the sensory properties of end-products, the yeast S. cerevisiae invariably dominates the final stages of fermentation. The ability of S. cerevisiae to outcompete other microbial species during alcoholic fermentation processes, such as winemaking, has traditionally been ascribed to its high fermentative power and capacity to withstand the harsh environmental conditions, i.e. high levels of ethanol and organic acids, low pH values, scarce oxygen availability and depletion of certain nutrients. However, in recent years, several studies have raised evidence that S. cerevisiae, beyond its remarkable fitness for alcoholic fermentation, also uses defensive strategies mediated by different mechanisms, such as cell-to-cell contact and secretion of antimicrobial peptides, to combat other microorganisms. In this paper, we review the main physiological features underlying the special aptitude of S. cerevisiae for alcoholic fermentation and discuss the role of microbial interactions in its dominance during alcoholic fermentation, as well as its relevance for winemaking.
Collapse
|
15
|
Chandra M, Madeira I, Coutinho AR, Albergaria H, Malfeito-Ferreira M. Growth and volatile phenol production by Brettanomyces bruxellensis in different grapevine varieties during fermentation and in finished wine. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2559-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Bridier A, Hammes F, Canette A, Bouchez T, Briandet R. Fluorescence-based tools for single-cell approaches in food microbiology. Int J Food Microbiol 2015; 213:2-16. [PMID: 26163933 DOI: 10.1016/j.ijfoodmicro.2015.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 12/31/2022]
Abstract
The better understanding of the functioning of microbial communities is a challenging and crucial issue in the field of food microbiology, as it constitutes a prerequisite to the optimization of positive and technological microbial population functioning, as well as for the better control of pathogen contamination of food. Heterogeneity appears now as an intrinsic and multi-origin feature of microbial populations and is a major determinant of their beneficial or detrimental functional properties. The understanding of the molecular and cellular mechanisms behind the behavior of bacteria in microbial communities requires therefore observations at the single-cell level in order to overcome "averaging" effects inherent to traditional global approaches. Recent advances in the development of fluorescence-based approaches dedicated to single-cell analysis provide the opportunity to study microbial communities with an unprecedented level of resolution and to obtain detailed insights on the cell structure, metabolism activity, multicellular behavior and bacterial interactions in complex communities. These methods are now increasingly applied in the field of food microbiology in different areas ranging from research laboratories to industry. In this perspective, we reviewed the main fluorescence-based tools used for single-cell approaches and their concrete applications with specific focus on food microbiology.
Collapse
Affiliation(s)
| | - F Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A Canette
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | - R Briandet
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France.
| |
Collapse
|
17
|
Branco P, Viana T, Albergaria H, Arneborg N. Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae induce alterations in the intracellular pH, membrane permeability and culturability of Hanseniaspora guilliermondii cells. Int J Food Microbiol 2015; 205:112-8. [PMID: 25897995 DOI: 10.1016/j.ijfoodmicro.2015.04.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 11/27/2022]
Abstract
Saccharomyces cerevisiae produces antimicrobial peptides (AMPs) during alcoholic fermentation that are active against several wine-related yeasts (e.g. Hanseniaspora guilliermondii) and bacteria (e.g. Oenococcus oeni). In the present study, the physiological changes induced by those AMPs on sensitive H. guilliermondii cells were evaluated in terms of intracellular pH (pHi), membrane permeability and culturability. Membrane permeability was evaluated by staining cells with propidium iodide (PI), pHi was determined by a fluorescence ratio imaging microscopy (FRIM) technique and culturability by a classical plating method. Results showed that the average pHi of H. guilliermondii cells dropped from 6.5 (healthy cells) to 5.4 (damaged cells) after 20 min of exposure to inhibitory concentrations of AMPs, and after 24 h 77.0% of the cells completely lost their pH gradient (∆pH=pHi-pHext). After 24h of exposure to AMPs, PI-stained (dead) cells increased from 0% to 77.7% and the number of viable cells fell from 1×10(5) to 10 CFU/ml. This means that virtually all cells (99.99%) became unculturable but that a sub-population of 22.3% of the cells remained viable (as determined by PI staining). Besides, pHi results showed that after 24h, 23% of the AMP-treated cells were sub-lethally injured (with 0<∆pH<3). Taken together, these results indicated that this subpopulation was under a viable but non-culturable (VBNC) state, which was further confirmed by recuperation assays. In summary, our study reveals that these AMPs compromise the plasma membrane integrity (and possibly also the vacuole membrane) of H. guilliermondii cells, disturbing the pHi homeostasis and inducing a loss of culturability.
Collapse
Affiliation(s)
- Patrícia Branco
- Unit of Bioenergy, Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Tiago Viana
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Helena Albergaria
- Unit of Bioenergy, Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.
| | - Nils Arneborg
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| |
Collapse
|
18
|
The application of flow cytometry in microbiological monitoring during winemaking: two case studies. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-1025-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
19
|
Jiang R, Wang M, Xue J, Xu N, Hou G, Zhang W. Cytotoxicity of sulfurous acid on cell membrane and bioactivity of Nitrosomonas europaea. CHEMOSPHERE 2015; 119:896-901. [PMID: 25240954 DOI: 10.1016/j.chemosphere.2014.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/18/2014] [Accepted: 08/16/2014] [Indexed: 06/03/2023]
Abstract
Nitrosomonas europaea, an ammonia oxidizing bacterium, was chosen as a research model to study the alteration of cell membrane in the presence of sulfurous acid and biodegradation of acetochlor. Significant changes of the outer cell membrane were observed in the presence of sulfurous acid using scanning electron microscopy (SEM) and Atomic Force Microscopy (AFM). The fluorescence polarization has shown a significant decrease in membrane fluidity and the increase of permeability of cell membrane. Lysozyme experiment show the cell becomes easily influenced by substance in medium. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) measurements show considerable amount of Ca(2+) and Mg(2+) in the supernatant from the sulfurous acid exposed cells. Sulfurous acid treatment enhanced the ability of N. europaea to degrade acetochlor. On this basis, it can be concluded that the increased cell permeability is favor for the absorbability of nutrition. As a result, N. europaea grows faster and the biodegradation efficiency was improved.
Collapse
Affiliation(s)
- Ruiyu Jiang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Mingqing Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Jianliang Xue
- Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Ning Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Guihua Hou
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wubing Zhang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| |
Collapse
|
20
|
Wang C, Esteve-Zarzoso B, Mas A. Monitoring of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris (synonym Candida zemplinina) populations during alcoholic fermentation by fluorescence in situ hybridization. Int J Food Microbiol 2014; 191:1-9. [PMID: 25218463 DOI: 10.1016/j.ijfoodmicro.2014.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/31/2014] [Accepted: 08/09/2014] [Indexed: 10/24/2022]
Abstract
Various molecular approaches have been applied as culture-independent techniques to monitor wine fermentations over the last decade. Among them, those based on RNA detection have been widely used for yeast cell detection, assuming that RNA only exists in live cells. Fluorescence in situ hybridization (FISH) targeting intracellular rRNA is considered a promising technique for the investigation of wine ecology. For the present study, we applied the FISH technique in combination with epifluorescence microscopy and flow cytometry to directly quantify populations of Saccharomyces cerevisiae, Hanseniaspora uvarum, and Starmerella bacillaris during alcoholic fermentations. A new specific probe that hybridizes with eight species of Hanseniaspora genus and a second probe specific for Starm. bacillaris were designed, and the conditions for their application to pure cultures, mixed cultures, and wine samples were optimized. Single and mixed fermentations were performed with natural, concentrated must at two different temperatures, 15 °C and 25 °C. The population dynamics revealed that the Sacch. cerevisiae population increased to 10(7)-10(8)cells/ml during all fermentations, whereas H. uvarum and Starm. bacillaris tended to increase in single fermentations but remained at levels similar to their inoculations at 10(6)cells/ml in mixed fermentations. Temperature mainly affected the fermentation duration (slower at the lower temperature) but did not affect the population sizes of the different species. The use of these probes in natural wine fermentations has been validated.
Collapse
Affiliation(s)
- Chunxiao Wang
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, Tarragona 43007, Spain
| | - Braulio Esteve-Zarzoso
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, Tarragona 43007, Spain.
| | - Albert Mas
- Departament de Bioquímica i Biotecnologia, Facultat d' Enologia, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, Tarragona 43007, Spain
| |
Collapse
|