1
|
Cieza MYR, Bonsaglia ECR, Rall VLM, dos Santos MV, Silva NCC. Staphylococcal Enterotoxins: Description and Importance in Food. Pathogens 2024; 13:676. [PMID: 39204276 PMCID: PMC11357529 DOI: 10.3390/pathogens13080676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Staphylococcus aureus stands out as one of the most virulent pathogens in the genus Staphylococcus. This characteristic is due to its ability to produce a wide variety of staphylococcal enterotoxins (SEs) and exotoxins, which in turn can cause staphylococcal food poisoning (SFP), clinical syndromes such as skin infections, inflammation, pneumonia, and sepsis, in addition to being associated with the development of inflammation in the mammary glands of dairy cattle, which results in chronic mastitis and cell necrosis. SEs are small globular proteins that combine superantigenic and emetic activities; they are resistant to heat, low temperatures, and proteolytic enzymes and are tolerant to a wide pH range. More than 24 SE genes have been well described (SEA-SEE, SEG, SEH, SEI, SEJ, SElK, SElL, SElM, SElN, SElO, SElP, SElQ, SElR, SElS, SElT, SElU, SElV, SElW, SElX, SElY, and SElZ), being a part of different SFP outbreaks, clinical cases, and isolated animal strains. In recent years, new genes (sel26, sel27, sel28, sel31, sel32, and sel33) from SEs have been described, as well as two variants (seh-2p and ses-3p) resulting in a total of thirty-three genes from Ses, including the nine variants that are still in the process of genetic and molecular structure evaluation. SEs are encoded by genes that are located in mobile genetic elements, such as plasmids, prophages, pathogenicity islands, and the enterotoxin gene cluster (egc), and housed in the genomic island of S. aureus. Both classical SEs and SE-like toxins (SEls) share phylogenetic relationships, structure, function, and sequence homology, which are characteristics for the production of new SEs through recombination processes. Due to the epidemiological importance of SEs, their rapid assessment and detection have been crucial for food security and public health; for this reason, different methods of identification of SEs have been developed, such as liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), molecular methods, and whole-genome sequencing; providing the diagnosis of SEs and a better understanding of the occurrence, spread, and eradication of SEs. This review provides scientific information on the enterotoxins produced by S. aureus, such as structural characteristics, genetic organization, regulatory mechanisms, superantigen activity, mechanisms of action used by SEs at the time of interaction with the immune system, methods of detection of SEs, and recent biocontrol techniques used in food.
Collapse
Affiliation(s)
- Mirian Yuliza Rubio Cieza
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil;
| | - Erika Carolina Romão Bonsaglia
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Pirassununga 13635-900, Brazil; (E.C.R.B.); (M.V.d.S.)
| | - Vera Lucia Mores Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu 18618-691, Brazil;
| | - Marcos Veiga dos Santos
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Pirassununga 13635-900, Brazil; (E.C.R.B.); (M.V.d.S.)
| | - Nathália Cristina Cirone Silva
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil;
| |
Collapse
|
2
|
Bak YS, Park JY, Kim JB, Cho SH. Molecular characterization and antibiotic resistance of Staphylococcus aureus strains isolated from patients with diarrhea in Korea between the years 2007 and 2022. Food Sci Biotechnol 2024; 33:1965-1974. [PMID: 38752118 PMCID: PMC11091020 DOI: 10.1007/s10068-023-01478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 05/18/2024] Open
Abstract
To investigate the molecular characteristics and antibiotic resistance of Staphylococcus aureus isolates from patients with diarrhea in Korea, 327 S. aureus strains were collected between 2007 and 2022. The presence of staphylococcal enterotoxin (SE) and toxic shock syndrome toxin-1 (TSST-1) genes in S. aureus isolates was determined by PCR. The highest expression of the TSST-1 gene was found in the GIMNO type (43.1% of GIMNO type). GIMNO type (Type I) refers to each staphylococcal enterotoxin (SE) gene gene (initials of genes): G = seg; I = sei; M = selm; N = seln; O = selo. Moreover, Type I isolates showed a significantly higher resistance to most antibiotics. A total of 195 GIMNO-type S. aureus strains were analyzed using multilocus sequence typing (MLST), and 18 unique sequence types (STs) were identified. The most frequent sequence type was ST72 (36.9%), followed by ST5 (22.1%) and ST30 (16.9%). Interestingly, ST72 strains showed a higher prevalence of MRSA than the other STs. In conclusion, our results were the first reported for S. aureus strains in Korea, which significantly expanded S. aureus genotype information for the surveillance of pathogenic S. aureus and may provide important epidemiological information to resolve several infectious diseases caused by S. aureus. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01478-9.
Collapse
Affiliation(s)
- Young-Seok Bak
- Department of Emergency Medical Services, Sun Moon University, Asan-si, Chungcheongnam-do 31460 Korea
| | - Jun-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jung-Beom Kim
- Department of Food Science and Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Seung-Hak Cho
- Department of Emergency Medical Services, Sun Moon University, Asan-si, Chungcheongnam-do 31460 Korea
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-Gu, Cheongju, 363-951 Republic of Korea
| |
Collapse
|
3
|
Minutillo R, Pirard B, Fatihi A, Cavaiuolo M, Lefebvre D, Gérard A, Taminiau B, Nia Y, Hennekinne JA, Daube G, Clinquart A. The Enterotoxin Gene Profiles and Enterotoxin Production of Staphylococcus aureus Strains Isolated from Artisanal Cheeses in Belgium. Foods 2023; 12:4019. [PMID: 37959138 PMCID: PMC10650413 DOI: 10.3390/foods12214019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
A Staphyloccoccus aureus is one of the leading causes of food poisoning outbreaks (FPOs) worldwide. Staphylococcal food poisoning (SFP) is induced by the ingestion of food containing sufficient levels of staphylococcal enterotoxins (SEs). Currently, 33 SEs and SE-like toxins (SEls) have been described in the literature, but only five named "classical" enterotoxins are commonly investigated in FPOs due to lack of specific routine analytical techniques. The aims of this study were to (i) establish the genetic profile of strains in a variety of artisanal cheeses (n = 30) in Belgium, (ii) analyze the expression of the SE(l)s by these strains and (iii) compare the output derived from the different analytical tools. Forty-nine isolates of S. aureus were isolated from ten Belgian artisanal cheeses and were analyzed via microbiological, immunological, liquid chromatography mass spectrometry, molecular typing and genetic methods. The results indicated that classical SEs were not the dominant SEs in the Belgian artisanal cheeses that were analyzed in this study, and that all S. aureus isolates harbored at least one gene encoding a new SE(l). Among the new SE(l)s genes found, some of them code for enterotoxins with demonstrated emetic activity and ecg-enterotoxins. It is worth noting that the involvement of some of these new SEs has been demonstrated in SFP outbreaks. Thus, this study highlighted the importance of the development of specific techniques for the proper investigation of SFP outbreaks.
Collapse
Affiliation(s)
- Raphaëlle Minutillo
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medecine, Avenue de Cureghem 10, 4000 Liege, Belgium (B.P.); (B.T.); (G.D.)
| | - Barbara Pirard
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medecine, Avenue de Cureghem 10, 4000 Liege, Belgium (B.P.); (B.T.); (G.D.)
| | - Abdelhak Fatihi
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (M.C.); (D.L.); (Y.N.); (J.-A.H.)
| | - Marina Cavaiuolo
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (M.C.); (D.L.); (Y.N.); (J.-A.H.)
| | - Donatien Lefebvre
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (M.C.); (D.L.); (Y.N.); (J.-A.H.)
| | - Amaury Gérard
- Brewing and Food Science Unit, LABIRIS, Avenue Emile Gryzon 1, 1070 Anderlecht, Belgium;
| | - Bernard Taminiau
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medecine, Avenue de Cureghem 10, 4000 Liege, Belgium (B.P.); (B.T.); (G.D.)
| | - Yacine Nia
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (M.C.); (D.L.); (Y.N.); (J.-A.H.)
| | - Jacques-Antoine Hennekinne
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France; (A.F.); (M.C.); (D.L.); (Y.N.); (J.-A.H.)
| | - Georges Daube
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medecine, Avenue de Cureghem 10, 4000 Liege, Belgium (B.P.); (B.T.); (G.D.)
| | - Antoine Clinquart
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medecine, Avenue de Cureghem 10, 4000 Liege, Belgium (B.P.); (B.T.); (G.D.)
| |
Collapse
|
4
|
Noli Truant S, Redolfi DM, Sarratea MB, Malchiodi EL, Fernández MM. Superantigens, a Paradox of the Immune Response. Toxins (Basel) 2022; 14:toxins14110800. [PMID: 36422975 PMCID: PMC9692936 DOI: 10.3390/toxins14110800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild to life-threatening infections. Almost all S. aureus isolates encode at least one of these toxins, though there is no complete knowledge about how their production is triggered. One of the main problems with the available evidence for these toxins is that most studies have been conducted with a few superantigens; however, the resulting characteristics are attributed to the whole group. Although these toxins share homology and a two-domain structure organization, the similarity ratio varies from 20 to 89% among different SAgs, implying wide heterogeneity. Furthermore, every attempt to structurally classify these proteins has failed to answer differential biological functionalities. Taking these concerns into account, it might not be appropriate to extrapolate all the information that is currently available to every staphylococcal SAg. Here, we aimed to gather the available information about all staphylococcal SAgs, considering their functions and pathogenicity, their ability to interact with the immune system as well as their capacity to be used as immunotherapeutic agents, resembling the two faces of Dr. Jekyll and Mr. Hyde.
Collapse
|
5
|
Carneiro Aguiar RA, Ferreira FA, Dias RS, Nero LA, Miotto M, Verruck S, De Marco I, De Dea Lindner J. Graduate Student Literature Review: Enterotoxigenic potential and antimicrobial resistance of staphylococci from Brazilian artisanal raw milk cheeses. J Dairy Sci 2022; 105:5685-5699. [DOI: 10.3168/jds.2021-21634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
|
6
|
El-Sayed AS, Ibrahim H, Farag MA. Detection of Potential Microbial Contaminants and Their Toxins in Fermented Dairy Products: a Comprehensive Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Fermented dairy products are dominant constituents of daily diets around the world due to their desired organoleptic properties, long shelf life, and high nutritional value. Probiotics are often incorporated into these products for their health and technological benefits. However, the safety and possible contamination of fermented dairy products during the manufacturing process could have significant deleterious health and economic impacts. Pathogenic microorganisms and toxins from different sources in fermented dairy products contribute to outbreaks and toxicity cases. Although the health and nutritional benefits of fermented dairy products have been extensively investigated, safety hazards due to contamination are relatively less explored. As a preventive measure, it is crucial to accurately identify and determine the associated microbiota or their toxins. It is noteworthy to highlight the importance of detecting not only the pathogenic microbiota but also their toxic metabolites so that putative outbreaks can thereby be prevented or detected even before they cause harmful effects to human health. In this context, this review focuses on describing techniques designed to detect potential contaminants; also, the advantages and disadvantages of these techniques were summarized. Moreover, this review compiles the most recent and efficient analytical methods for detecting microbial hazards and toxins in different fermented dairy products of different origins. Causative agents behind contamination incidences are also discussed briefly to aid in future prevention measures, as well as detection approaches and technologies employed. Such approach enables the elucidation of the best strategies to control contamination in fermented dairy product manufacturing processes.
Collapse
|
7
|
Characterization of Virulence Factors in Enterotoxin-Producing Staphylococcus aureus from Bulk Tank Milk. Animals (Basel) 2022; 12:ani12030301. [PMID: 35158625 PMCID: PMC8833733 DOI: 10.3390/ani12030301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Staphylococcus aureus, apathogen that causes bovine mastitis, produces various virulence factors, and human consumption of milk contaminated with the S. aureus enterotoxin may pose a public health risk. This study analyzed the genetic characteristics of bovine-mastitis-related virulence factors to evaluate the potential pathogenesis of S. aureus isolated from bulk tank milk. The results show that S. aureus isolated from bulk tank milk, not from mastitis, had a high prevalence of virulence factors and that the high presence of enterotoxins may be due to poor hygiene. Therefore, developing a strong monitoring and sanitation program for dairy factories is important to ensure hygienic milk production. Abstract Staphylococcus aureus, a persistent mastitis-causing pathogen, produces various virulence factors, including enterotoxins. This study analyzed the genetic characteristics of bovine-mastitis-related virulence factors to evaluate the potential pathogenesis of S. aureus isolated from bulk tank milk. Among 93 S. aureus isolates from 396 dairy farms operated by 3 dairy companies in Korea, 40 (43.0%) isolates carried one or more enterotoxin genes. Moreover, S. aureus carrying enterotoxin genes showed a higher prevalence in all virulence genes tested in this study except for pvl and lukM, which were not detected in any isolate, than in the isolates without enterotoxin genes. In particular, the prevalence of six genes (hla, hlb, lukED, fnbA, clfA, and clfB) was significantly higher in S. aureus carrying the enterotoxin genes than in the isolates without the enterotoxin genes (p < 0.05). The most common multilocus sequence type of enterotoxin-producing isolates was ST188, and all isolates of ST188 harbored the see gene. S. aureus isolated from bulk tank milk, not from mastitis, had a high prevalence of virulence factors, posing a public health threat. Moreover, a high presence of enterotoxins in bulk tank milk is probably because of poor hygiene; therefore, it is important to develop strong monitoring and sanitation programs for dairy factories.
Collapse
|
8
|
Grispoldi L, Karama M, Armani A, Hadjicharalambous C, Cenci-Goga BT. Staphylococcus aureus enterotoxin in food of animal origin and staphylococcal food poisoning risk assessment from farm to table. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2020.1871428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Musafiri Karama
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Andrea Armani
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Beniamino T. Cenci-Goga
- Department of Veterinary Medicine, Perugia, Italy
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
9
|
Machado V, Pardo L, Cuello D, Giudice G, Luna PC, Varela G, Camou T, Schelotto F. Presence of genes encoding enterotoxins in Staphylococcus aureus isolates recovered from food, food establishment surfaces and cases of foodborne diseases. Rev Inst Med Trop Sao Paulo 2020; 62:e5. [PMID: 32049256 PMCID: PMC7014549 DOI: 10.1590/s1678-9946202062005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to describe the microbiological characteristics and profile of genes encoding enterotoxins in 95 Staphylococcus aureus isolates obtained between April 2011 and December 2014 from foodstuffs, persons and surfaces of retail food stores. After microbiological identification and antimicrobial susceptibility testing, polymerase chain reactions (PCR) were performed, targeting sea, seb, sec, sed and see genes that code for classical enterotoxins (ET) A-E, and three additional genes: seg , seh and sei , coding for so-called "new enterotoxins" G, H and I. The isolates were characterized by Pulsed Field Gel Electrophoresis (PFGE), and five selected isolates were further analyzed through Multi Locus Sequence Typing (MLST). It is noteworthy that 54.7% of the examined isolates harbored one or more of the investigated ET gene types. Most positive isolates carried more than one ET gene up to five types; seg was the most frequent ET gene, followed by sei. Five enterotoxin-coding isolates also coded for some antimicrobial resistance genes. Two of them, and four additional non-enterotoxic isolates carried erm genes expressing inducible clindamycin resistance. PFGE-types were numerous and diverse, even among enterotoxin-coding strains, because most isolates did not belong to known foodborne outbreaks and the sampling period was long. MLST profiles were also varied, and a new ST 3840 was described within this species. ST 88 and ST 72 enterotoxin-coding isolates have been identified in other regions in association with foodborne outbreaks. This manuscript reports the first systematic investigation of enterotoxin genes in S. aureus isolates obtained from foodstuffs and infected people in Uruguay.
Collapse
Affiliation(s)
- Virginia Machado
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Lorena Pardo
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Dianna Cuello
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Guillermina Giudice
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Patricia Correa Luna
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Gustavo Varela
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| | - Teresa Camou
- Departamento de Laboratorios de Salud Pública, Montevideo, Uruguay
| | - Felipe Schelotto
- Universidad de la República, Facultad de Medicina, Instituto de Higiene, Departamento de Bacteriología y Virología, Montevideo, Uruguay
| |
Collapse
|
10
|
Nogueira Viçosa G, Vieira Botelho C, Botta C, Bertolino M, Fernandes de Carvalho A, Nero LA, Cocolin L. Impact of co-cultivation with Enterococcus faecalis over growth, enterotoxin production and gene expression of Staphylococcus aureus in broth and fresh cheeses. Int J Food Microbiol 2019; 308:108291. [PMID: 31437692 DOI: 10.1016/j.ijfoodmicro.2019.108291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022]
Affiliation(s)
| | | | - Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Marta Bertolino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Luís Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy.
| |
Collapse
|
11
|
High diversity of genetic lineages and virulence genes of Staphylococcus aureus isolated from dairy products in Tunisia. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1417-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Fisher EL, Otto M, Cheung GYC. Basis of Virulence in Enterotoxin-Mediated Staphylococcal Food Poisoning. Front Microbiol 2018; 9:436. [PMID: 29662470 PMCID: PMC5890119 DOI: 10.3389/fmicb.2018.00436] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
The Staphylococcus aureus enterotoxins are a superfamily of secreted virulence factors that share structural and functional similarities and possess potent superantigenic activity causing disruptions in adaptive immunity. The enterotoxins can be separated into two groups; the classical (SEA-SEE) and the newer (SEG-SElY and counting) enterotoxin groups. Many members from both these groups contribute to the pathogenesis of several serious human diseases, including toxic shock syndrome, pneumonia, and sepsis-related infections. Additionally, many members demonstrate emetic activity and are frequently responsible for food poisoning outbreaks. Due to their robust tolerance to denaturing, the enterotoxins retain activity in food contaminated previously with S. aureus. The genes encoding the enterotoxins are found mostly on a variety of different mobile genetic elements. Therefore, the presence of enterotoxins can vary widely among different S. aureus isolates. Additionally, the enterotoxins are regulated by multiple, and often overlapping, regulatory pathways, which are influenced by environmental factors. In this review, we also will focus on the newer enterotoxins (SEG-SElY), which matter for the role of S. aureus as an enteropathogen, and summarize our current knowledge on their prevalence in recent food poisoning outbreaks. Finally, we will review the current literature regarding the key elements that govern the complex regulation of enterotoxins, the molecular mechanisms underlying their enterotoxigenic, superantigenic, and immunomodulatory functions, and discuss how these activities may collectively contribute to the overall manifestation of staphylococcal food poisoning.
Collapse
Affiliation(s)
- Emilie L Fisher
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Gonzalez AGM, Marques LMP, Gomes MDSA, Beltrão JCDC, Pinheiro MG, Esper LMR, Paula GRD, Teixeira LA, Aguiar-Alves F. Methicillin-resistant Staphylococcus aureus in minas frescal cheese: evaluation of classic enterotoxin genes, antimicrobial resistance and clonal diversity. FEMS Microbiol Lett 2018; 364:4584464. [PMID: 29099921 DOI: 10.1093/femsle/fnx232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/31/2017] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate classical enterotoxin (sea to see) and mecA genes, by polymerase chain reaction and anitimicrobial susceptibility, by disk diffusion test of Staphylococcus aureus isolated from minas frescal cheese (MFC). All methicillin-resistant S. aureus (MRSA) isolates were investigated for the presence of Panton-Valentine leukocidin (PVL) genes and clonal diversity. Thirty-one S. aureus were isolated from four MFC samples. Seven (22.6%) S. aureus carried mecA gene and two of them carried enterotoxin genes seb/sec and sea/seb. Five (16.1%) S. aureus isolates showed induced resistance to clindamycin and nine (29%) were resistant to multiple -antibiotics (MDR), among these, six were MRSA. No MRSA isolates presented the PVL genes. Four MRSA were grouped into three clones and three isolates were not typable by pulsed field gel electrophoresis. MRSA isolates showed, by multilocus sequence typing, sequence types ST1, ST5, ST72 and ST4304 (new ST) and S. aureus protein A (spa type) t127, t568 and t2703. These data suggest that MFC may constitute a risk to the consumer because of its potential for staphylococcal food poisoning; however it might, also, become one of MRSA and MDR strains disseminator, including clones usually found in the hospital environment.
Collapse
Affiliation(s)
| | - Leila Márcia Peres Marques
- Departamento de Bromatologia, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ 24241-000, Brasil
| | - Marcel da Silva Amorim Gomes
- Departamento de Bromatologia, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ 24241-000, Brasil
| | | | - Marcos Gabriel Pinheiro
- Programa de Pós Graduacao em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, RJ 24033-900, Brasil
| | - Luciana Maria Ramires Esper
- Departamento de Bromatologia, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ 24241-000, Brasil
| | - Geraldo Renato de Paula
- Departamento de Tecnologia de Medicamentos e Cosméticos, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ 24241-000, Brasil
| | - Lenise Arneiro Teixeira
- Departamento de Tecnologia de Medicamentos e Cosméticos, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ 24241-000, Brasil
| | - Fábio Aguiar-Alves
- Programa de Pós Graduacao em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, RJ 24033-900, Brasil
| |
Collapse
|
14
|
Nagaraj S, Ramlal S, Kingston J, Batra HV. Development of IgY based sandwich ELISA for the detection of staphylococcal enterotoxin G (SEG), an egc toxin. Int J Food Microbiol 2016; 237:136-141. [DOI: 10.1016/j.ijfoodmicro.2016.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022]
|
15
|
Song M, Shi C, Xu X, Shi X. Molecular Typing and Virulence Gene Profiles of Enterotoxin Gene Cluster (egc)-Positive Staphylococcus aureus Isolates Obtained from Various Food and Clinical Specimens. Foodborne Pathog Dis 2016; 13:592-601. [PMID: 27792397 DOI: 10.1089/fpd.2016.2162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The enterotoxin gene cluster (egc) has been proposed to contribute to the Staphylococcus aureus colonization, which highlights the need to evaluate genetic diversity and virulence gene profiles of the egc-positive population. Here, a total of 43 egc-positive isolates (16.2%) were identified from 266 S. aureus isolates that were obtained from various food and clinical specimens in Shanghai. Seven different egc profiles were found based on the polymerase chain reaction (PCR) result for egc genes. Then, these 43 egc-positive isolates were further typed by multilocus sequence typing, pulsed-field gel electrophoresis (PFGE), multiple-locus variable-number tandem-repeat analysis (MLVA), and accessory gene regulatory (agr) typing. It showed that the 43 egc-positive isolates displayed 17 sequence types, 28 PFGE patterns, 29 MLVA types, and 4 agr types, respectively. Among them, the dominant clonal lineage was CC5-agr II (48.84%). Thirty toxin and 20 adhesion-associated genes were detected by PCR in egc-positive isolates. Notably, invasive toxin genes showed a high prevalence, such as 76.7% for Panton-Valentine leukocidin encoding genes, 27.9% for sec, and 23.3% for tsst-1. Most of the examined adhesion-associated genes were found to be conserved (76.7-100%), whereas the fnbB gene was only found in 8 (18.6%) isolates. In addition, 33 toxin gene profiles and 13 adhesion gene profiles were identified, respectively. Our results imply that isolates belonging to the same clonal lineage harbored similar adhesion gene profiles but diverse toxin gene profiles. Overall, the high prevalence of invasive virulence genes increases the potential risk of egc-positive isolates in S. aureus infection.
Collapse
Affiliation(s)
- Minghui Song
- 1 MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University , Shanghai, P.R. China
| | - Chunlei Shi
- 1 MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University , Shanghai, P.R. China
| | - Xuebing Xu
- 2 Shanghai Municipal Center for Disease Control and Prevention , Shanghai, P.R. China
| | - Xianming Shi
- 1 MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University , Shanghai, P.R. China
| |
Collapse
|
16
|
Basanisi MG, La Bella G, Nobili G, Franconieri I, La Salandra G. Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiol 2016; 62:141-146. [PMID: 27889140 DOI: 10.1016/j.fm.2016.10.020] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 12/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogen emerging in hospitals as well as community and livestock. MRSA is a significant and costly public health concern because it may enter the human food chain and contaminate milk and dairy products causing foodborne illness. This study aimed to determine the occurrence and the characteristics of MRSA isolated from 3760 samples of milk and dairy products in a previous survey conducted in southern Italy during 2008-2014. Overall out of 484 S. aureus strains isolated, 40 (8.3%) were MRSA and were characterized by spa-typing, Multi-Locus Sequence Typing, SCCmec typing, Staphylococcal enterotoxins (SEs) genes, Panton-Valentine Leukocidin (PVL) genes and ability to form biofilm. The most frequently recovered STs were ST152 (t355-67.5%), followed by ST398 (t899, t108-25%), ST1 (t127-5%) and ST5 (t688-2.5%). All isolates harboured the SCCmec type V (92.5%) or IVa (25%). In one isolate (2.5%), ST398/t899, the SCCmec resulted not detected. Three isolates (7.5%) carried one or more enterotoxin encoding genes (one strain had seg, sei, sem, sen and seo genes; two strains had seh gene). The 50% of isolated strains harboured PVL-encoding genes. Molecular analysis for icaA and icaD genes showed: 72.5% icaA and icaD positive, 25% only icaD gene and one icaA and icaD negative. The detection of MRSA in food of animal origin is a potential health hazard, thus it is necessary monitoring of food-producing animals and improving hygiene standards in food practices in order to reduce the microbiological risk to minimum.
Collapse
Affiliation(s)
- M G Basanisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121 Foggia, Italy
| | - G La Bella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121 Foggia, Italy
| | - G Nobili
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121 Foggia, Italy
| | - I Franconieri
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121 Foggia, Italy
| | - G La Salandra
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121 Foggia, Italy.
| |
Collapse
|
17
|
Tarekgne EK, Skjerdal T, Skeie S, Rudi K, Porcellato D, Félix B, Narvhus JA. Enterotoxin Gene Profile and Molecular Characterization of Staphylococcus aureus Isolates from Bovine Bulk Milk and Milk Products of Tigray Region, Northern Ethiopia. J Food Prot 2016; 79:1387-95. [PMID: 27497126 DOI: 10.4315/0362-028x.jfp-16-003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Staphylococcal food poisoning (SFP) is an important foodborne disease worldwide, and milk and milk products are commonly associated with SFP outbreaks. The objectives of this study were to investigate the distribution of staphylococcal enterotoxin (se) genes in Staphylococcus aureus from raw cow's milk and milk products and to assess their genetic background with the spa typing method. Of the 549 samples (297 bulk milk and 162 milk product samples) collected from Tigray region, Northern Ethiopia, 160 (29.1%) were positive for S. aureus, of which 82 (51%) were found to harbor se genes by a modified multiplex PCR. Nine se genes were identified: sea (n = 12), seb (n = 3), sec (n = 3), sed(n = 4), seg (n = 49), seh (n = 2), sei (n = 40), sej (n = 1), and tsst-1 (n = 24). The classical type of genes accounted for 27%. Of the 82 enterotoxigenic isolates, 41.5 and 12.4% harbored two or more se genes, respectively. The highest gene association was observed between sei and seg, whereas sea and seb were always found together with the new types of se genes. Altogether, 18 genotypes of toxin genes were identified, and 33% of the samples contained > 5 log CFU ml(-1) S. aureus. spa typing identified 22 spa types and three novel spa sequences, which showed the high genetic diversity of the isolates. No apparent relationship was observed between spa type and se genes. Of the 25 spa types, 13 (52%) were from raw milk, 3 (12%) from milk products, and 9 (36%) from both types of sample. Types t314 (20.7%,n = 17), t458 (18.3%, n = 15), and t6218 (9.8%, n= 8) were the most common spa types identified and were widely distributed in three of the eight studied localities. This is the first study from the Tigray region to report the high distribution of enterotoxigenic S. aureus with a diversified genetic background from dairy food. The study may provide valuable data for microbial food safety risk assessment, molecular epidemiology, and phylogenetic studies of S. aureus in Ethiopia.
Collapse
Affiliation(s)
- Enquebaher K Tarekgne
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway; College of Veterinary Medicine, P.O. Box 1118, Mekelle University, Mekelle, Tigray, Ethiopia.
| | - Taran Skjerdal
- Norwegian Veterinary Institute (NVI), Ullevålsveien, 68, Pb 750 Sentrum, N-0106 Oslo, Norway
| | - Siv Skeie
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Rudi
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Davide Porcellato
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| | - Benjamin Félix
- French Agency for Food, Environmental and Occupational Health and Safety, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, Paris, France
| | - Judith A Narvhus
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
18
|
|
19
|
Vu BG, Stach CS, Salgado-Pabón W, Diekema DJ, Gardner SE, Schlievert PM. Superantigens of Staphylococcus aureus from patients with diabetic foot ulcers. J Infect Dis 2014; 210:1920-7. [PMID: 24951827 DOI: 10.1093/infdis/jiu350] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) infections are challenging. Staphylococcus aureus is the most commonly isolated pathogen in DFUs. Superantigens (SAgs) are causative in many S. aureus infections. We hypothesized both that DFU S. aureus will produce large SAg numbers, consistent with skin infections, and that certain SAgs will be overrepresented. We assessed the SAg and α-toxin profile of isolates from patients with DFU, compared with profiles of isolates from other sources. MATERIALS Twenty-five S. aureus isolates from patients with DFU were characterized. Polymerase chain reaction was used to detect genes for methicillin-resistance and SAgs. Some SAgs and the α-toxin were quantified. We compared the SAg profile of DFU isolates with SAg profiles of S. aureus isolates from skin lesions of patients with atopic dermatitis and from vaginal mucosa of healthy individuals. RESULTS Most DFU isolates were methicillin susceptible (64%), with USA100 the most common clonal group. The SAg gene profile of DFU isolates most closely resembled that of isolates from patients with atopic dermatitis, with the highest number of different SAg genes per isolate and a high prevalence of staphylococcal enterotoxin D and the enterotoxin gene cluster. DFU isolates also had a high prevalence of staphylococcal enterotoxin-like X. CONCLUSIONS Comparison of the SAg profile of DFU isolates to SAg profiles of skin lesion isolates and vaginal mucosa isolates revealed that the SAg profile of DFU isolates was more similar to that of skin lesion isolates. SAgs offer selective advantages in facilitating DFU infections and suggest that therapies to neutralize or reduce SAg production by S. aureus may be beneficial in management of patients with DFU.
Collapse
|