1
|
Marked inter-strain heterogeneity in the differential expression of some key stress response and virulence-related genes between planktonic and biofilm cells in Listeria monocytogenes. Int J Food Microbiol 2023; 390:110136. [PMID: 36807004 DOI: 10.1016/j.ijfoodmicro.2023.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Listeria monocytogenes is a facultatively intracellular pathogenic bacterium that can provoke invasive listeriosis, a severe foodborne infection in humans. Outside the host, this is capable to survive for long periods in soil, and water, as well as on plants, while, like many other microorganisms, this can also attach to abiotic surfaces, such as food contact ones, forming biofilms on them. It has been suggested that inside those sessile communities, L. monocytogenes cells not only display an increased stress tolerance but may also boost their pathogenicity. In this work, the expression of ten key stress response and/or virulence-related genes (i.e., groEL, hly, iap, inlA, inlB, lisK, mdrD, mdrL, prfA, and sigB) was studied in three different L. monocytogenes strains (AAL20066, AAL20107, and PL24), all isolated from foods and each belonging to a different listeriosis-associated serovar (1/2a, 1/2b, and 1/2c, respectively). For this, each strain was initially left to develop a mature biofilm on a model polystyrene surface (Petri dish) by incubating for 144 h (6 days) at 20 °C in tryptone soya broth (with medium renewal every 48 h). Following incubation, both biofilm and the surrounding free-swimming (planktonic) cells were recovered, and their gene expressions were comparatively evaluated through targeted reverse transcription-quantitative polymerase chain reactions (RT-qPCR). Results revealed a strain-dependent differential gene expression between the two cell types. Thus, for instance, in strain AAL20107 (ser. 1/2b) biofilm growth worryingly resulted in a significant overexpression of all the studied genes (P < 0.05), whereas in strain PL24 (ser. 1/2c), the expression of most genes (8/10) did not change upon biofilm growth, with only two of them (groEL and hly) being again significantly upregulated. Such transcriptomic strain variability in stress adaptation and/or virulence induction should be generally considered in the physiological studies of pathogenic biofilms and preferably upon designing and implementing novel and more efficient eradication methods.
Collapse
|
2
|
Verma DK, Thakur M, Singh S, Tripathy S, Gupta AK, Baranwal D, Patel AR, Shah N, Utama GL, Niamah AK, Chávez-González ML, Gallegos CF, Aguilar CN, Srivastav PP. Bacteriocins as antimicrobial and preservative agents in food: Biosynthesis, separation and application. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101594] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Melian C, Bentencourt E, Castellano P, Ploper D, Vignolo G, Mendoza LM. Biofilm genes expression of Listeria monocytogenes exposed to Latilactobacillus curvatus bacteriocins at 10 °C. Int J Food Microbiol 2022; 370:109648. [DOI: 10.1016/j.ijfoodmicro.2022.109648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
4
|
Yuan L, Mgomi FC, Xu Z, Wang N, He G, Yang Z. Understanding of food biofilms by the application of omics techniques. Future Microbiol 2021; 16:257-269. [PMID: 33595346 DOI: 10.2217/fmb-2020-0218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Biofilms constitute a protective barrier for foodborne pathogens to survive under stressful food processing conditions. Therefore, studies into the development and control of biofilms by novel techniques are vital for the food industry. In recent years, foodomics techniques have been developed for biofilm studies, which contributed to a better understanding of biofilm behavior, physiology, composition, as well as their response to antibiofilm methods at different molecular levels including genes, RNA, proteins and metabolic metabolites. Throughout this review, the main studies where foodomics tools used to explore the mechanisms for biofilm formation, dispersal and elimination were reviewed. The data summarized from relevant studies are important to design novel and appropriate biofilm elimination methods for enhancing food safety at any point of food processing lines.
Collapse
Affiliation(s)
- Lei Yuan
- College of Food Science & Engineering, Yangzhou University, Yangzhou, 225127, China.,Fujian Provincial Key Laboratory of Food Microbiology & Enzyme Engineering, Xiamen, 361021, China
| | - Fedrick C Mgomi
- College of Food Science & Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Zhenbo Xu
- School of Food Science & Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ni Wang
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Guoqing He
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhenquan Yang
- College of Food Science & Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
5
|
Melian C, Castellano P, Segli F, Mendoza LM, Vignolo GM. Proteomic Analysis of Listeria monocytogenes FBUNT During Biofilm Formation at 10°C in Response to Lactocin AL705. Front Microbiol 2021; 12:604126. [PMID: 33584610 PMCID: PMC7880126 DOI: 10.3389/fmicb.2021.604126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/06/2021] [Indexed: 12/04/2022] Open
Abstract
Listeria monocytogenes is one of the major food-related pathogens and is able to survive and multiply under different stress conditions. Its persistence in industrial premises and foods is partially due to its ability to form biofilm. Thus, as a natural strategy to overcome L. monocytogenes biofilm formation, the treatment with lactocin AL705 using a sublethal dose (20AU/ml) was explored. The effect of the presence of the bacteriocin on the biofilm formation at 10°C of L. monocytogenes FBUNT was evaluated for its proteome and compared to the proteomes of planktonic and sessile cells grown at 10°C in the absence of lactocin. Compared to planktonic cells, adaptation of sessile cells during cold stress involved protein abundance shifts associated with ribosomes function and biogenesis, cell membrane functionality, carbohydrate and amino acid metabolism, and transport. When sessile cells were treated with lactocin AL705, proteins’ up-regulation were mostly related to carbohydrate metabolism and nutrient transport in an attempt to compensate for impaired energy generation caused by bacteriocin interacting with the cytoplasmic membrane. Notably, transport systems such as β-glucosidase IIABC (lmo0027), cellobiose (lmo2763), and trehalose (lmo1255) specific PTS proteins were highly overexpressed. In addition, mannose (lmo0098), a specific PTS protein indicating the adaptive response of sessile cells to the bacteriocin, was downregulated as this PTS system acts as a class IIa bacteriocin receptor. A sublethal dose of lactocin AL705 was able to reduce the biofilm formation in L. monocytogenes FBUNT and this bacteriocin induced adaptation mechanisms in treated sessile cells. These results constitute valuable data related to specific proteins targeting the control of L. monocytogenes biofilm upon bacteriocin treatment.
Collapse
Affiliation(s)
- Constanza Melian
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Franco Segli
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Lucía M Mendoza
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Graciela Margarita Vignolo
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
6
|
Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella Typhimurium. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107361] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Szendy M, Kalkhof S, Bittrich S, Kaiser F, Leberecht C, Labudde D, Noll M. Structural change in GadD2 of Listeria monocytogenes field isolates supports nisin resistance. Int J Food Microbiol 2019; 305:108240. [PMID: 31202151 DOI: 10.1016/j.ijfoodmicro.2019.108240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/15/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
The lantibiotic nisin is used as a food additive to effectively inactivate a broad spectrum of Gram-positive bacteria such as Listeria monocytogenes. In total, 282 L. monocytogenes field isolates from German ready-to-eat food products, food-processing environments and patient samples and 39 Listeria reference strains were evaluated for their susceptibility to nisin. The MIC90 value was <1500 IU ml-1. Whole genome sequences (WGS) of four nisin susceptible (NS; growth <200 IU ml-1) and two nisin resistant L. monocytogenes field isolates (NR; growth >1500 IU ml-1) of serotype IIa were analyzed for DNA sequence variants (DSVs) in genes putatively associated with NR and its regulation. WGS of NR differed from NS in the gadD2 gene encoding for the glutamate decarboxylase system (GAD). Moreover, homology modeling predicted a protein structure of GadD2 in NR that promoted a less pH dependent GAD activity and may therefore be beneficial for nisin resistance. Likewise NR had a significant faster growth rate compared to NS in presence of nisin at pH 7. In conclusion, results contributed to ongoing debate that a genetic shift in GAD supports NR state.
Collapse
Affiliation(s)
- Maik Szendy
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, D-96450 Coburg, Germany
| | - Stefan Kalkhof
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, D-96450 Coburg, Germany; Fraunhofer Institute for Cell Therapy and Immunology, Protein Biomarker Unit, Perlickstr. 1, D-04103 Leipzig, Germany
| | - Sebastian Bittrich
- University of Applied Sciences Mittweida, Department of Bioinformatics, Technikumplatz 17, D-09648 Mittweida, Germany; Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, D-01307 Dresden, Germany
| | - Florian Kaiser
- University of Applied Sciences Mittweida, Department of Bioinformatics, Technikumplatz 17, D-09648 Mittweida, Germany; Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, D-01307 Dresden, Germany
| | - Christoph Leberecht
- University of Applied Sciences Mittweida, Department of Bioinformatics, Technikumplatz 17, D-09648 Mittweida, Germany; Biotechnology Center (BIOTEC), TU Dresden, Tatzberg 47-49, D-01307 Dresden, Germany
| | - Dirk Labudde
- University of Applied Sciences Mittweida, Department of Bioinformatics, Technikumplatz 17, D-09648 Mittweida, Germany
| | - Matthias Noll
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, D-96450 Coburg, Germany.
| |
Collapse
|
8
|
Quercetin reduces adhesion and inhibits biofilm development by Listeria monocytogenes by reducing the amount of extracellular proteins. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes 2018; 4:9. [PMID: 29707229 PMCID: PMC5908865 DOI: 10.1038/s41522-018-0053-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Biofilms are sessile communities of bacteria typically embedded in an extracellular polymeric matrix. Bacterial cells embedded in biofilms are inherently recalcitrant to antimicrobials, compared to cells existing in a planktonic state, and are notoriously difficult to eradicate once formed. Avenues to tackle biofilms thus far have largely focussed on attempting to disrupt the initial stages of biofilm formation, including adhesion and maturation of the biofilm. Such an approach is advantageous as the concentrations required to inhibit formation of biofilms are generally much lower than removing a fully established biofilm. The crisis of antibiotic resistance in clinical settings worldwide has been further exacerbated by the ability of certain pathogenic bacteria to form biofilms. Perhaps the most notorious biofilm formers described from a clinical viewpoint have been methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Gardnerella vaginalis and Streptococcus mutans, the latter of which is found in oral biofilms. Due to the dearth of novel antibiotics in recent decades, compounded by the increasing rate of emergence of resistance amongst pathogens with a propensity for biofilm formation, solutions are urgently required to mitigate these crises. Bacteriocins are a class of antimicrobial peptides, which are ribosomally synthesised and often are more potent than their antibiotic counterparts. Here, we review a selection of studies conducted with bacteriocins with the ultimate objective of inhibiting biofilms. Overall, a deeper understanding of the precise means by which a biofilm forms on a substrate as well as insights into the mechanisms by which bacteriocins inhibit biofilms is warranted.
Collapse
|
10
|
Proteomic analysis of food borne pathogens following the mode of action of the disinfectants based on pyridoxal oxime derivatives. Food Res Int 2017; 99:560-570. [DOI: 10.1016/j.foodres.2017.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 01/11/2023]
|
11
|
Pérez-Ibarreche M, Mendoza LM, Vignolo G, Fadda S. Proteomic and genetics insights on the response of the bacteriocinogenic Lactobacillus sakei CRL1862 during biofilm formation on stainless steel surface at 10°C. Int J Food Microbiol 2017; 258:18-27. [PMID: 28738195 DOI: 10.1016/j.ijfoodmicro.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/07/2017] [Accepted: 07/02/2017] [Indexed: 11/16/2022]
Abstract
Some lactic acid bacteria have the ability to form biofilms on food-industry surfaces and this property could be used to control food pathogens colonization. Lactobacillus sakei CR1862 was selected considering its bacteriocinogenic nature and ability to adhere to abiotic surfaces at low temperatures. In this study, the proteome of L. sakei CRL1862 grown either under biofilm on stainless steel surface and planktonic modes of growth at 10°C, was investigated. Using two-dimensional gel electrophoresis, 29 out of 43 statistically significant spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Ten proteins resulted up-regulated whereas 16 were down-regulated during biofilm formation. Differentially expressed proteins were found to belong to carbohydrate, nucleotide, aminoacid and lipid metabolisms as well as translation, peptide hydrolysis, cell envelope/cell wall biosynthesis, adaption to atypical conditions and protein secretion. Some proteins related to carbohydrate and nucleotide metabolisms, translation and peptide degradation were overexpressed whereas those associated to stress conditions were synthesized in lower amounts. It seems that conditions for biofilm development would not imply a stressful environment for L. sakei CRL1862 cells, directing its growth strategy towards glycolytic flux regulation and reinforcing protein synthesis. In addition, L. sakei CRL1862 showed to harbor nine out of ten assayed genes involved in biofilm formation and protein anchoring. By applying qRT-PCR analysis, four of these genes showed to be up regulated, srtA2 being the most remarkable. The results of this study contribute to the knowledge of the physiology of L. sakei CRL1862 growing in biofilm on a characteristic food contact surface. The use of this strain as green biocide preventing L. monocytogenes post-processing contamination on industrial surfaces may be considered.
Collapse
Affiliation(s)
- Mariana Pérez-Ibarreche
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Lucía M Mendoza
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Silvina Fadda
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, T4000ILC Tucumán, Argentina.
| |
Collapse
|
12
|
Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents 2017; 49:1-11. [DOI: 10.1016/j.ijantimicag.2016.08.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/10/2016] [Accepted: 08/08/2016] [Indexed: 10/20/2022]
|
13
|
Casado Muñoz MDC, Benomar N, Ennahar S, Horvatovich P, Lavilla Lerma L, Knapp CW, Gálvez A, Abriouel H. Comparative proteomic analysis of a potentially probiotic Lactobacillus pentosus MP-10 for the identification of key proteins involved in antibiotic resistance and biocide tolerance. Int J Food Microbiol 2016; 222:8-15. [DOI: 10.1016/j.ijfoodmicro.2016.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 12/10/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
|
14
|
Impact of Moderate Heat, Carvacrol, and Thymol Treatments on the Viability, Injury, and Stress Response of Listeria monocytogenes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:548930. [PMID: 26539510 PMCID: PMC4619816 DOI: 10.1155/2015/548930] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/11/2015] [Indexed: 11/18/2022]
Abstract
The microbial safety and stability of minimally processed foods are based on the application of combined preservative factors. Since microorganisms are able to develop adaptive networks to survive under conditions of stress, food safety may be affected, and therefore understanding of stress adaptive mechanisms plays a key role in designing safe food processing conditions. In the present study, the viability and the sublethal injury of Listeria monocytogenes exposed to moderate heat (55 °C) and/or essential oil compounds (carvacrol and thymol, 0.3 mM) treatments were studied. Synergistic effects were obtained when combining mild heat (55 °C) with one or both essential oil compounds, leading to inactivation kinetics values three to four times lower than when using heat alone. All the treatments applied caused some injury in the population. The injury levels ranged from around 20% of the surviving population under the mildest conditions to more than 99.99% under the most stringent conditions. Protein extracts of cells exposed to these treatments were analysed by two-dimensional gel electrophoresis. The results obtained revealed that stressed cells exhibited differential protein expression to control cells. The proteins upregulated under these stressing conditions were implicated, among other functions, in stress response, metabolism, and protein refolding.
Collapse
|
15
|
O’Connor PM, Ross RP, Hill C, Cotter PD. Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Tsai WC, Kuo TY, Lin CY, Lin JC, Chen WJ. Photobacterium damselae subsp. piscicida responds to antimicrobial peptides through phage-shock-protein A (PspA)-related extracytoplasmic stress response system. J Appl Microbiol 2014; 118:27-38. [PMID: 25346320 DOI: 10.1111/jam.12672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/05/2014] [Accepted: 10/16/2014] [Indexed: 11/26/2022]
Abstract
AIMS To investigate whether Photobacterium damselae subsp. piscicida (Phdp) can sense and directly respond to the presence of cationic antimicrobial peptides (AMPs). METHODS AND RESULTS We performed proteomic methodologies to investigate the responsive proteins of Phdp on exposure to AMP Q6. Proteins significantly altered were analysed by two-dimensional gel electrophoresis (2-DE) and LC-ESI-Q-TOF MS/MS, thus resulting in five outer membrane proteins (OMPs), seven inner membrane proteins (IMPs) and 17 cytoplasmic proteins (CPs) identified. Quantitative real-time PCR was also applied to monitor the mRNA expression level of these target proteins. CONCLUSIONS COG analysis revealed that upon exposure to AMP Q6, the majority of the upregulated proteins were involved in signal transduction mechanism, carbohydrate transport and metabolism, post-translational modification, protein turnover and chaperones, while the downregulated proteins were mainly related to energy production and conversion. Among them, phage-shock-protein A (PspA)-related stress response system was considered to play a crucial role. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this is the first report elucidating Phdp AMP-response mechanism using proteomics approach. AMP-responsive proteins identified in this study could serve as attractive targets for developing more effective antimicrobial agents against Phdp and other marine bacterial pathogens.
Collapse
Affiliation(s)
- W-C Tsai
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Santi L, Beys-da-Silva WO, Berger M, Calzolari D, Guimarães JA, Moresco JJ, Yates JR. Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes. J Proteome Res 2014; 13:1545-59. [PMID: 24467693 PMCID: PMC3993910 DOI: 10.1021/pr401075f] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Cryptococcus neoformans, a pathogenic yeast, causes
meningoencephalitis, especially in immunocompromised patients, leading
in some cases to death. Microbes in biofilms can cause persistent
infections, which are harder to treat. Cryptococcal biofilms are becoming
common due to the growing use of brain valves and other medical devices.
Using shotgun proteomics we determine the differences in protein abundance
between biofilm and planktonic cells. Applying bioinformatic tools,
we also evaluated the metabolic pathways involved in biofilm maintenance
and protein interactions. Our proteomic data suggest general changes
in metabolism, protein turnover, and global stress responses. Biofilm
cells show an increase in proteins related to oxidation–reduction,
proteolysis, and response to stress and a reduction in proteins related
to metabolic process, transport, and translation. An increase in pyruvate-utilizing
enzymes was detected, suggesting a shift from the TCA cycle to fermentation-derived
energy acquisition. Additionally, we assign putative roles to 33 proteins
previously categorized as hypothetical. Many changes in metabolic
enzymes were identified in studies of bacterial biofilm, potentially
revealing a conserved strategy in biofilm lifestyle.
Collapse
Affiliation(s)
- Lucélia Santi
- Department of Chemical Physiology, The Scripps Research Institute , North Torrey Pines Road, Suite 11, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|